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and to use this data to estimate the targets' trajectories. In defense related ap-

plications, it is necessary to have algorithms which are computationally efficient,
robust, and minimize data storage requirements. Recently developed approaches

in the field of multi-target tracking, however, have been shown to have significant

computational disadvantages.

In this study, non-hierarchical clustering methods are combined with

computationally efficient algorithms such as those used to solve assignment and I

quadratic programming problems to provide an integrated procedure which is

computationally efficient, minimizes data storage requirements, and gives a rea-
sonable estimate of the number of targets. Combined with a sequential estimation
filter such as the extended Kalman filter, the procedure can provide estimates of

a target's state and state covariance after three observations and continuously

maintain updated target state estimates in real time.
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Empirical results based on 100 targets in ballistic trajectories have

demonstrated this method's effectiveness by properly clustering data with four

measurement attributes (range, range rate, azimuth, and elevation) in over 98

percent of the cases. Its robustness is manifested by the fact that these results

apply to scenarios with 20 percent missing data and biases of up to one arc minute

in the sensor attitude and 0.5 seconds in the sensor clock. And its capability to

track in' real time is demonstrated with a duty cycle of less than five percent.
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Chapter 1

Background

1.1 Introduction

Today, many applications require the tracking of a large set of uniden-

tified targets. Among these are applications in high-energy particle physics, fluid

mechanics, and ballistic missile defense. Crucial to the concept of a space-based

ballistic missile defense under the proposed Strategic Defense Initiative (SDI) is

the development of a system with the capability to detect, classify, and predict

the motion of a large number of unidentified targets. Composed of orbiting sen-

sor platforms and linked through the Command, Control, Communications, and

Intelligence (C3 I) element, this system must not only be able to handle multi-

ple targets, but also to integrate the combined data from multiple sensors. This

data must be combined in such a way as to present a realistic picture of the

scenario underway so that limited resources may be directed in an appropriate

response. Because the time for such a response in an Intercontinental Ballistic

Missile (ICBM) attack scenario is so short, efficient, robust, and accurate algo-

rithms capable of handling multi-target, multi-sensor data in real time are critical

to achieving a successful ICBM defense.

1.2 Problem Statement

Nominally, this detection-estimation system will be comprised of two

elements. The first element is a constellation of observation satellites placed in

orbital configurations which allow suitable coverage of the areas of interest (the

ICBMs' trajectories from their launch sites to the anticipated impact points). The

satellites' onboard sensors must be capable of providing time-tagged observations

of a number of attributes of the targets in its field-of-view. Typically, these

1D
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attributes might include range and range-rate (for active sensors) and azimuth

and elevation (for both active and passive sensors).

In a typical ballistic missile defense scenario, these orbiting satellite sen-

sor platforms will survey the earth from altitudes of several thousand kilometers.

Upon launch of an ICBM attack, each sensor may detect as many as 100 tar-
gets within its field-of-view, and thcse targets will likely be closely spaced and

have similar attributes. Not only will there be uncertainty associated with the
measurements of the targets' attributes due to sensor limitations, but some ob-

servations will be lost due to spurious measurements or unobservable conditions

relating to the sensor-target geometry. In addition, there will be uncertainties
associated with both the sensor attitude and sensor clock (position).

The second element of the detection-estimation system is the C3 I site
where the data from various sensors is combined. This site might be a land-based

command center or a space-based battle station (perhaps even co-located with

one of the observation sensors).

Between these two system elements, four basic tasks must be accom-

plished:

" Separate the available data into tracks associated with individual targets,

" Correlate/combine tracks from various sensors,

" Estimate the targets' state at some reference epoch, and

" Predict (track) the targets' state at some future epoch.

The order in which these tasks are listed should not be taken to imply

a sequential relationship. In fact, how these tasks are performed will determine
the overall complexity of the multi-target, multi-sensor tracking problem. In

addition, just what processing is done and by which element is a question of

distributed estimation.

Further complicating an already difficult problem are uncertainties in
the numbers of targets visible at each sensor or jointly visible at any subset of

sensors, noisy and spurious measurements, and the nonlinear measurements and
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nonlinear dynamics of ballistic flight. Additional constraints may arise due to

the need to decentralize data processing to enhance survivability.

1.3 Multi-Target Tracking

As a result of the many complexities involved in the multi-target track-

ing problem, a wide range of methods have been developed in an attempt to

handle these four tasks and their associated difficulties. Research in multi-target

tracking has concentrated in four primary areas: b

" Track initiation,

" Track maintenance,

" Sensor-to-sensor correlation, and

" Improved estimation methods.

These four areas correspond roughly to the four tasks performed by the detection-

estimation system.

Methods for handling track initiation and track maintenance often have

much in common and, as such, have actually been handled as different mani-

festations of the same problem. Historically, approaches to this problem can be

classed as Bayesian or non-Bayesian.

Initially, research focused on what are now known as non-Bayesian

methods. Led by the pioneering work of Sittler in 1964, these methods include
6

(1) tracking via data association, (2) track-split filtering, and (3) the maximum

likelihood method. In tracking via data association, Sittler [47] devised a method

whereby whenever more than one sensor measurement was observed in the neigh-

borhood of a predicted measurement, the current track was split. Trajectories

whose maximum likelihood function fell below a certain threshold were dropped

from further consideration. This method handles both track initiation and track

termination, as well as false alarms and missing measurements.

In 1975, Smith and Buechler [48] expanded on Sittler's approach within

the framework of Kalman filtering (which was not in common use in 1964) for an

I P1



4

application to radar tracking. In the track-splitting filter, Sittler's concept of a

neighborhood was now a validation region which was derived from the innovation

covariance matrix obtained from the standard Kalman filter. However, both

Sittler's method and that of Smith and Buechler were considered impractical

because the exponential growth in the number of trajectories would saturate the

memory and computational capability of even the largest computers.

Stein and Blackman [52] further modernized Sittler's work in the devel-

opment of the maximum likelihood method. They used a suboptimal sequential

method which selected only the most likely assignment of targets and measure-

ments from each data set or scan, thereby mitigating the trajectory growth prob-

lem. Morefield [39] extended this approach by partitioning the data into mutually

exclusive and exhaustive sets of feasible tracks and formulating a 0-1 integer pro-

gram. While Morefield's work put track initiation and maintenance on a more

solid theoretical basis, its application still has large computational and memory

requirements in a dense target environment.

Initial work with Bayesian approaches began with the nearest neighbor

filter. Sea [421, Singer and Stein [44], and Singer and Sea [45] used the nearest

neighbor of a predicted measurement and modified the Kalman filter to account

for the a priori probability that this measurement might be spurious (Bar-Shalom

[10]). However, it was discovered that this filter can easily lose the target in a

cluttered environment.

Work by Jaffer and Bar-Shalom [31] and Bar-Shalom and Jaffer [6] led to

the development of the probability data association filter (PDAF) by Bar-Shalom

[81, Bar-Shalom and Tse [7,9], and Bar-Shalom and Birmiwal [11]. A suboptimal

Bayesian approach, the PDAF sequentially incorporates clusters of measurements

into a track by attaching to each cluster an a posteriori probability of being

correct. This is important because the standard formulation of the Kalman filter

is optimal only when there is no possibility of incorrect assignments being made
to a track. As a result, estimates and covariances in the PDAF account for the

measurement origin uncertainty rather than being conditioned on the "accepted"
tracks being true. The primary limitation of the PDAF is that it only tracks a

single target in a multiple target or cluttered environment.

r-Or V_ ra r w . 41Aor krkp~r 19 R
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More recently, the joint PDAF of Fortmann, Bar-Shalom, and Scheff6

[27], Chang and Bar-Shalom [18,19], and Chang, Chong, and Bar-Shalom [20] is

used to jointly compute the probabilities for all targets and measurements that
form a cluster. In it, posterior probabilities of the joint probability distribution

function are conditioned on all measurements up to the present, allowing multiple

targets (resolved or unresolved) to be tracked in a cluttered environment.

An optimal Bayesian approach was developed by Singer, Sea, and House-
wright [46] for a single target in a cluttered environment. The major difference

between the optimal Bayesian approach and the PDAF is that decomposition of
the state estimate is accomplished in terms of all combinations of measurements

from initial to present time rather than in terms of the latest measurements only.

That is, the state estimate is determined based upon all possible track histo-

ries for a given target. Again, the major difficulty with each of these last two

approaches is exponential memory growth.

In a multiple sensor environment, data from the various sensors must

somehow be combined to correlate targets sets which may be visible to sev-

eral sensors. Methods for sensor-to-sensor correlation attributed to Singer and

Kanyuck [431, Stein and Blackman [52], Bowman [14], and Chang and Youens

[16], are generally extensions of the maximum likelihood approaches used for the

track maintenance problem. There are two primary approaches to correlating
target sets from multiple sensors. The first is to map all observations from all

sensors into a common measurement space and apply any of the tracking methods

used for the single-sensor case. However, this approach will work only with mea-

surement sets which permit unambiguous mappings into a common measurement
space. The second approach is to form single-sensor tracks and then correlate the

tracks from various sensors via pattern recognition or matchings of target state

estimates.

Finally, because of the likelihood of imperfect correlation of observations

with clusters, it is necessary to develop tracking filters which incorporate these

correlation errors in the update of the error covariance matrix. The efforts of

Singer and Stein [44], Jaffer and Bar-Shalom [31], Singer and Sea [45], and Singer,

Sea, and Housewright [46] resulted in the development of filtering algorithms

which use the a posteriori probability that an observation originated from a

CIO
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specific target in a dense multi-target environment. In addition, Tse, Larson,
and Bar-Shalom [561 and Chang [15] considered the specific problem of estimation
with angles-only measurements. The particular set of measurements available can

play a significant role in both choosing the most appropriate tracking method
and developing the tracking filter due to problems of marginal observability. The

angles-only case is particularly difficult in this respect.

1.4 Clustering

In an attempt to mitigate some of the computational complexity of the
algorithms discussed in the previous section, recent investigators have examined
the application of a broad range of methods from the classification field (Tapley

et al. [53,54], Balakrishnan et al. [4]). These methods are collectively known as

clustering methods.

The first definitive results in clustering were produced by Sokal and
Sneath [50] and refined by Sneath and Sokal [49] in the field of numerical taxon-
omy. While these references are devoted primarily to the biological sciences, the

approach applies to all types of clustering. The clustering algorithms presented
in these and subsequent references by Anderberg [2] and Romesburg [41] all share

a common framework.

First, the data to be clustered is standardized based on some figure
of merit which considers the relative importance of the various types of mea-

surements. Once this standardization is completed, a similarity or dissimilarity

coefficient is computed between each pair of measurements. The resulting matrix
is known as a resemblance matrix. There are many methods for computing its

coefficients. Typically, these coefficients are metrics such as Euclidean or average

Euclidean distance in the measurement (attribute) space. Although other types
of coefficients exist, they are not appropriate to this endeavor because of their
inability to discriminate the types of clusters encountered in the multi-target

tracking problem (those with additive or proportional translations).

Given the resemblance matrix, there are two approaches to forming
clusters: hierarchical and non-hierarchical. The earliest approaches to clustering

involved hierarchical clustering, wherein clusters are "built up" from the data un-
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til one large cluster is formed. The most common of the many methods available b

involve linking clusters through the use of either weighted or unweighted pair-

group procedures using arithmetic averages (WPGMA or UPGMA). In these

methods, links are developed based on the smallest (weighted or unweighted)

average of all the distances' between the points in a pair of clusters.

Other common methods include the single linkage, complete linkage,
and centroid methods. Single linkage builds clusters through association of the

shortest distance between the closest points in any two clusters while complete

linkage builds clusters based on association of the shortest distance between the

farthest points in any two clusters. Single linkage may be thought of as a "near-

est neighbor" approach whereas complete linkage is a "strongest association"

approach. Centroid methods offer a compromise between these two extremes,

building linkages based on the shortest, distance between the centroids of existing

clusters. Of the hierarchical methods discussed, the single linkage method is the

most appropriate for the multi-target tracking problem because of its tendency

to form clusters which are chains of data points (a feature which is normally

considered a drawback to this method).

The tree formed by any of these clustering methods, which shows how

the clusters are linked and at what level, is known as a phenogram or dendro-

gram. In Figure 1.1, the phenogram shows four objects and how they are related.

The level at which objects are linked together represents their similarity, with the

lowest links indicating the strongest similarities. To complete the hierarchical ap-

proach the phenogram must be "split" at some level to decide how many clusters

exist, a requirement key to the multi-target tracking problem where the number

of targets is unknown. Depending on what level the phenogram in Figure 1.1 is

split, will determine how many distinct clusters exist. Splitting at Level 1 yields
four clusters while splitting at Level 2 yields only two.

In hierarchical clustering methods, a data set of n observations yields n

nested classifications ranging from one cluster with n observations to n clusters

with one observation each. Non-hierarchical methods, on the other hand, cluster

1The term distance is used in this discussion to imply a similarity or dissimilarity coefficient.
Smaller distances refer to similar coefficients while larger distances refer to the opposite.

4 - P~R
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Figure 1.1: Sample Phenogram

observations into k clusters, where k is either specified a priori or is determined

as part of the method used (Anderberg [2]). These methods enjoy an advantage

over hierarchical methods since it is not necessary for them to store the similarity

matrix or even the data set since the data is typically processed serially. It is,

therefore, possible to cluster much larger data sets with non-hierarchical methods.

The majority of non-hierarchical clustering methods involve the use of

seed points. There are many ways of seeding clusters. MacQueen [36] suggested

choosing the first k observations as seeds while McRae [37] chose k random obser-

vations. Forgy [26] partitioned the data into k mutually exclusive and exhaustive

sets and used the set centroids as the seed points. A more intuitively appealing

approach was used by Astrahan 131 wherein "densities" were calculated for each

data point and the points with the k highest "densities" were selected as seeds.

In a similar approach, Ball and Hall [5] chose the first seed as the centroid of the

data set. Additional seed points were added while processing the data if they

were more than some set distance from all existing seed points.

Once the seed points have been determined, clusters are built around
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them. Forgy's method [26] and Jancey's variant [32] assign observations to the b

closest seed while MacQueen's k-means method [36] assigns observations to the

cluster with the nearest centroid. Usually the clustering is reapplied after gen-

erating new seed points based on the current partition, such as the new cluster

centroids, and repeated until some convergence criterion is satisfied.

MacQueen [36] and Wishart (Anderberg [2]) developed methods which

permit variable numbers of clusters. In these methods, clusters are merged if

their seeds are within some pre-specified distance of each other. New clusters I
are formed when observations are found to be beyond some (usually different)

distance from the existing cluster seed points or centroids. As with the fixed

number of clusters methods, the process is repeated until convergence.

Finally, many authors have developed methods which propose criteria

for evaluating whether movements of individual observations result in an overall

improvement of a partition (Anderberg [2], Spath [511). These criteria are based

on multivariate statistical analysis techniques, such as linear discriminant analysis

and multivariate analysis of variance. The principal criteria used are:

" Minimize trace W,

* Minimize IWI/ITI or maximize ITI/IWI,

" Maximize the largest eigenvalue of W- 1 B, and

* Maximize the trace of W-'B,

where T is the total scatter matrix, W is the within cluster scatter matrix, and

B is the between ciuster scatter matrix. It can be shown that the three matrices

satisfy the relation T = B + W (Anderberg [2]). These criteria are generally

applied to the non-hierarchical methods discussed above as tests of convergence.

None of the currently employed clustering methods are designed to ex-

plicitly handle temporal data. Historically, clustering methods were developed to

segregate data into distinct classifications. Because the desire is to group those

observations which are most similar, the algorithms in use tend to generate hyper-

spherical clusters in the attribute space. As applied to the multi-target tracking

h.
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problem, however, this tendency to form hyperspherical clusters is a major limi- 1

tation. Due to the temporal dimension, observations associated with the correct

cluster will form tracks, not hyperspheres. This result, therefore, necessitates the

development of new clustering methods which explicitly account for the temporal

dimension in order to be useful in the multi-target tracking problem.

1.5 Current Approach

Due to the inherent complexities of the multi-target tracking problem,

it is a formidable task to develop an algorithm which can be shown to be optimal

and possess the following characteristics,

" Perform both track initiation and track maintenance and

" Permit processing of data in real time while minimizing

- Computational complexity and

- Data storage requirements.

The last two sub-objectives are important not only in achieving real time per-

formance but also in simplifying the processing component of the space-based

sensor. 5

A heuristic method is developed which combines the most attractive

features of the non-hierarchical clustering approaches with the track initiation

and track maintenance approaches suggested in references [38,39] (Morefield),

[16] (Chang and Youens), [17] (Chang and Tabaczynski), and [13] (Blackman).

In fact, Blackman [13] addresses the idea of combining these features in the

track maintenance phase, but does not provide a workable track initiation process

capable of handling large numbers of targets in ballistic trajectories. Without ,.

track initiation, track maintenance cannot be performed.

To demonstrate the effectiveness of this heuristic approach, the method

developed is specifically tailored to the ballistic missile defense problem with tar-

gets (ICBMs) in flight above a spherical earth with no atmosphere. Orbiting

satellite sensors surveying the ICBM attack provide time-tagged observations of 5

% %5
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each target's range, range rate, azimuth, and elevation. Additional details regard-

ing the simulation design and modeling assumptions are provided in Chapter 4

and Appendix A.

While the track initiation process marks the beginning of a track's life

cycle, the temporal clustering process itself begins with the track maintenance

phase. As seen in Figure 1.2, the temporal clustering process begins by reading

Read Observation Frame

Track Maintenance:

* Forecast Existing Clusters

Calculate Assignment Costs

Perform Cluster Assignments ]

TS
I Terminate/Update Clusters s

Track Initiation

F- Select Feasible Tracks

Select "Best" Tracks

F Initiate New Clusters
/S

Figure 1.2: Temporal Clustering Process

in the data from the current observation frame and then forecasting all existing
clusters to the current observation time. The costs of associating each new ob-

servation with a predicted observation corresponding to each existing cluster are

calculated and observations satisfying the gating criteria are assigned to clusters
to minimize the total overall association costs. Each cluster receiving a new ob-

,' . ,, '.;,L% 'J-T~t'.'" - - .- ,.. ' '*,[,,- ., ':."- ..-. ,',,',, '.T. ","..,'-
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servation has its state estimate updated while clusters not receiving observations

are considered for termination. Finally, all remaining observations are passed F

to the track initiation procedure for evaluation in determining feasible sets of

observations to initiate new tracks.

In Chapter 2, the various components making up the track maintenance

process of assigning observations from the current observation frame to existing

clusters will be discussed. The process of deciding how and when to terminate a

track is also addressed here.

Then, in Chapter 3, an effective means for performing track initiation
is developed. Chapter 4 contains a discussion of the specific simulation scenarios

examined as well as an analysis of the results. Finally, conclusions are presented

in Chapter 5 together with a discussion of proposed extensions to the current

research.

.

: ,,F



Chapter 2

Track Maintenance

Each observation frame read by the sensor, yields a set of observation

vector- consisting of the observation time and each object's range, range rate,

azimuth, and elevation relative to the sensor. This set of vectors does not neces-

sarily contain obser, ations of all the targets in the sensor's field-of-view. This is

due to observ.,bility problem ising from sensor characteristics and/or defects or

as a result of the sensr-' arget geoietry. In addition, there may be observations

which do not correspond i o any phiysical target, but are again the result of sensor

characteristics and the observation environment. Many of these spurious mea-

surements can be eliminated by pre-processing the data to remove inconsistent

observations in light of the sensor characteristics.

Since the track maintenance process is restricted to dealing with only

those observations recorded by the sensor, it must be capable of igning ob-

servations to existing clusters so that inappropriate assignments are disallowed

without eliminating correct assignments. This capability is necessary to prevent

making assignments to a track when observations are missing from that track. It

must also be able to continue existing tracks which do not receive an assignment
until such time as track termination is deemed appropriate.

2.1 Forecasting
To decide whether an observation should be considered for assignment

to an existing cluster, the "closeness" of each observation to each cluster must

first be determined. To do so, however, both the observation and the cluster must

be evaluated in the same space and at the same epoch. In the problem under

consideration, two spaces are used: the attribute space and the state space.

13

A. K
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In this study, the attribute space is a four-dimensional spherical coor-

dinate space centered on the satellite sensor. The direction of its primary axis

is fixed and points toward the vernal equinox. The four dimensions are the four

attributes measured for each target: range, range rate, azimuth, and elevation.

An object's state is some set of physical characteristics which, together

with a knowledge of the state transition rules, allows predictions of the state at

any future time. For this study, the state space is a six-dimensional inertial Carte-

sian coordinate space centered at the center of mass of the Earth. The direction

of its primary axis also points toward the vernal equinox. This coordinate system

is referred to as the Earth Centered Inertial (ECI) coordinate system. The six

dimensions of this space consist of three rectangular position components and

three rectangular velocity components.

The choice of this state space is possible because the motion of a target

in a conservative force field (one which can be described completely by a poten-

tial) can be fully described given that target's position and velocity. The case un-

der examination includes only gravitational effects and excludes non-conservative

forces such as thrust and drag, and is, therefore, a conservative system.

The use of the state space has several advantages over that of the at-

tribute space in the temporal clustering process. Data storage is minimized be-

cause knowledge of a target can be maintained in a single state vector rather than

a track of observations. Methods for efficiently tracking targets in the state space,

such as the Kalman filter, are readily available. And, for this study, estimates

in the state space can be easily and unambiguously mapped into the attribute

space while the converse is not true.

To begin the process of assigning observations to clusters, therefore,

each cluster's state vector is projected to some common observation epoch and

then mapped into the attribute space. Not only is it necessary to forecast the

state vector to the observation epoch, however, but the associated state covariance

matrix to be used to gate the observations must also be forecast to that epoch and

both the state and state covariance matrix must be mapped into the attribute

space for direct comparison with the observations. As secn in Figure 2.1, the

mapped state covariance can be used to form a confidence interval around the



projected state estimate. Two tracks are shown together with their estimated

states and gates. Only observations (hollow circles) falling within a gate are

considered for possible assignment to an existing track. In this example, one

observation could be assigned to either Track A or B, one observation could be

assigned only to Track B, and one observation could be assigned to neither.

Track A

,,'Track B

Figure 2.1: Gating Process

The original state covariance matrix is determined when the initial state estimate

is formed and is described in detail in Section 3.3.1.

2.1.1 Kalman Filter

A natural method for forecasting the cluster state vector is provided by

the Kalman filter. Not only does the Kalman filter provide a recursive means of

propagating the state estimate and state covariance matrix but it also provides an

optimal means for updating the same with the current observation. The Kalman

filter, as developed in Kalman [33] and Kalman and Bucy [34], assumes that

discrete states are linearly related via a state transition matrix and that discrete

observations are linearly related to the current state. That is

Sk+l = 4 (tk+i, tk)Sk + Uk (2.1)

Ok = HkSk + w k, (2.2)

where
E[uk] = 0 E[u=u- Qkbik

E[ujw T 1 =O. (2.3)
E[wk] = 0 E[wjwT] - Rbk

k "
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Here Sk is the target state at time tk, (tk+ ,tk) is the state transition matrix

which governs how S changes from time tk to tk+,, and uk is a white noise process.

Ok is the measurement for the target at time tk, Hk is the measurement transform

matrix which governs how the state Sk and the measurement Ok are related, and

Wk is another, independent, white noise process. Both Qk and Rk are assumed

diagonal matrices and bjk is the Kronecker delta.

The optimality criterion is that the estimate be a minimum variance

unbiased estimate of the true state. That is

Minimize E[J'R-'16k] (2.4)

subject to E[Skl = Sk, (2.5)

where

k = (Ok - HkSk). (2.6)

Assuming prior estimates of the state Sk and the state error covariance

Pk, the resulting minimum variance unbiased estimate is

sk = Sk + KA,(OA; - HkS), (2.7)

where

Kk = PkHk(HkPkHk + Rk) -1 "  (2.8)

The updated state error covariance then becomes

Pk = (I - KkHk)Pk, (2.9)

and the state and state error covariance matrix are propagated according to

Sk+, = 4 (tk+i,,tk)Sk (2.10)

Pk+I = k(tk+1 , tk)PkC(tk+1 , tk)T + Qk. (2.11)

Unfortunately, for a target in a ballistic trajectory, neither the dynamics

nor the measurements are linear. However, the system can be linearized through

the application of Taylor series expansions.
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2.1.2 Extended Kalman Filter

For a system with nonlinear dynamics and nonlinear measurements, the

standard model of Equations 2.1 and 2.2 becomes

§ = f(S, t) + u(t) (2.12)

O = h(S,t) + w(t) (2.13)

with the covariance properties of u(t) and w(t) unchanged. Equation 2.12 is the

differential equation describing how the system dynamics affect the state, S, and

Equation 2.13 describes the specific relationship between the observation and the

state over time.

Given some nominal reference trajectory S*(t), the true trajectory may

be written as

S(t) = S*(t) + s(t) (2.14)

so that Equations 2.12 and 2.13 become

S* + i = f(S* + s,t) + u(t) (2.15)

O = h(S- + s,t) + w(t). (2.16)

Assuming s to be small, f and h may be approximated with Taylor

series expansions, so

+ = f(S*,t)+ (f Y s+...+u(t) (2.17)

(as\

0 = h(S*,t) + (a s+ +w(t), (2.18)

where

= f(S*,t), (2.19)

fand and (2.20)(as as =s. as a Ss~s"

S
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Retaining only first-order terms, a linearized model in s results as

i = s + u(t) (2.21)

o = O) s + w(t) = 0 - h(S-,t) (2.22)

or, defining

A(t) = ( and H = , (2.23)

then

s = A(t)s + u(t) (2.24)

o = Hs + w(t). (2.25)

Standard algorithms for implementing the Kalman filter can be used,

with the only difference being that the nominal state vector, S*, and the state

covariance matrix, 4(tk+i, tk), are updated through the use of a numerical inte-

gration routine between time steps, with

S*= f(S*,t) 1 (t,tk...) = A(t)$(,tk_.) (.6
and 

(2.26)
S*(tk-) = sk(tk-i,tk-1) = I.

This implementation is known as the linearized Kalman filter.

Frequently it is desirable to use the current estimated trajectory in

place of the nominal reference trajectory since, under stable conditions, a better

estimate will result. The process of updating the reference trajectory with the

latest estimate of the true trajectory is known as rectification. Using rectification,

the reference trajectory is updated as

k = Sk + 9k (2.27)

for each new measurement. This rectified linearized Kalman filter is more com-

monly known as the Extended Kalman Filter (EKF) and is the filter of choice

for most astrodynamical tracking problems.
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2.1.3 State Propagation

At time tk, the state vector, Sk, consists of the target's position, rk, and

velocity, ik (or vk), in ECI coordinates

Sk = (Xk, Yk, Zk, Xk, Yk, zk)T. (2.28)

The observation vector, Ok, is

Ok = (pkI , ak, Ck) T , (2.29)

where pk is the range from the sensor to the target, Pk is the range rate, ak is

the target's azimuth, and Ek is the target's elevation.

Given estimates for S.m and Pm at some time tm prior to the time of

the current observation, the method to be used to forecast the target state and

covariance to the current observation time, to,, can be developed using the specific

dynamical model for this investigation.

As shown in Equation 2.26, the target state estimate, S, is updated

through numerical. integration of

S = f(S,t) (2.30)

with initial conditions

S(tm) = gm (2.31)

to the current observation time, t. The specific function f(S, t) depends on the

system dynamics. In general, for a target in ballistic flight,

= G(r,t) + D(r,v, t) + Tt + ) (t). (2.32)

Each term on the right-hand-side of Equation 2.32 represents a force per unit

mass (i.e., acceleration) on the target. G(r, t) is the combined gravitational

acceleration on the target due to the earth, sun, and moon, D(r, v, t) is the effect

of atmospheric drag, T(t) is the target's thrust, M(t) is the target's mass, and

T(t) is the acceleration due to all unmodeled forces. For this study, the target is

subjected only to the gravitational acceleration of a spherical earth.

J ',S
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For such a target in a two-body orbit, the standard second-order differ- 0

ential equation is p( 2 3
-_# (2.33)

r3 '

which, when expressed in the first-order form of Equation 2.12 gives

~f(S' t) = ,yI, r3,U Z )T, r(2.34)

and can be integrated, using the initial condition S(tm) = S,, from tm to t,.

Equation 2.34 results from differentiating Equation 2.28 and applying Equa-

tion 2.33.

Propagating the state covariance, Pm is a bit more difficult. From

Equation 2.11,

Po = -F(to, tm)Pm-(to, tm)T + Q, (2.35)

where the white noise process u is assumed to be homoscedastic and known.

Otherwise adaptive filtering techniques are necessary to adaptively compute Qn.

But, t(to, tin) itself must be numerically integrated, according to Equation 2.26

and the specific form of A(t) must be evaluated.

Letting S = (r,v)T and applying the definition of A(t) from Equa-

tion 2.23,

A/t -f f"S f"1 (2.36)
ios] TSg f", f '

where

fr = -0, (2.37)

fv = - I, (2.38)

1-3 (x)' -3 -) -3 (x)

V- 3 - - r-) 1 - 3 -3 () ,(2.39)

-3 (xz -3 - 1 -3 Z2

and f V=-= 0. (2.40)
av
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Therefore, the system of equations to be integrated is

or

irr = Cmv (2.42)

irv = C, (2.43)

CV = fvrC-r (2.44)

Cvv = fvr ,v (2.45)

subject to

,$r(tm,t.) = ',k,, (tm,t4) = I (2.46)

and 4v(tm, tm) = 'I, (tm,tm) = 0 (2.47)

So, to find Po, @(t0 , tin) is integrated according to Equations 2.42 through 2.47

and Equation 2.35 is applied.

With S, and P. the state estimate and its covariance must now be

mapped into the attribute space for use in completing the cluster assignment

process.

2.1.4 Mapping Into the Attribute Space

Given the target state, So = (r,, ro)T, and the sensor state, So =

(ros, ros)T, the transformation from the state space into the attribute space is

given by

po = (po0 ,po0 ,poz)T = ro - ros (2.48)

o = (AO,bo 0 Yb,)T = io - io, (2.49)

Po = 1I1P.1 (2.50) -
'p

Po = Po" Po (2.51)

a, = tan-1 (O) (2.52)
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e= tan' (6a) (2.53)

where Lo = Po.2 + po3 2  (2.54)

and Po is the unit vector along the range vector, po. These transformations are

based upon the sensor-target geometry depicted in Figure 2.2 and a standard

transformation of rectangular coordinates of the state space into the spherical

coordinate system of the attribute space.

STarget P0

r PSensor

Figure 2.2: Sensor-Target Geometry

The vector of estimated observations at the current observation time,

to, is designated by 6, where

Oo = (po, o,ao,co)T = 0.(S°). (2.55)

More properly, Oo should be considered to be a function of the uncertain param-

eters ro and io, with ros, /o, and to treated as constants.

Using a Taylor series expansion and retaining only first-order terms, the

state estimate can be shown to be an unbiased estimate. That is

E[Oo] = E[6o(So)] (2.56) "5.

= E [6o(oso) + (So -S )] (2.57)
.0

-P
'S
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=E [0 0 (,AS)] + E (ao E a6] (2.58)

a~oa60
= ~i'~+ (jo E[ 0 ]- S) (2.59)

e= 6o('), (2.60)

where
a 60) - So= ~ = Ho. (2.61)

Now, to find the state covariance matrix, a Taylor series expansion is again ap-

plied, so

6o- E[Oo] = 6o('so) + Ho(So- IAS) + . E[6o] (2.62)

= HO(So - IpS) +" (2.63)

and, retaining only first-order terms,

to = E [(6o - E[Oo])(Oo - E[0])T] (2.64)

= E [(Ho(So - A))(Ho(So - tSo))T] (2.65)
_ 4 "( ._ x.THT]

F[(Ho(So - ILo)(So - HIso)THTI (2.66)

= HOE [(H - o)(So- JJ~)r ] H T . (2.67)

But

E [(So - jAt-)(S - )T] (2.68)

is merely the state covariance matrix, Po. So, the estimated attribute covariance

matrix, -o, can be written

ho = HoPoH'. (2.69)

Actually, Eo = max(HoPoH T, R) is used, where R is the observation covariance

matrix. This prevents the estimated error associated with the observation from

becoming smaller than the known error of the sensor.
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Also, since uS. is not known, the reference state, So, is used instead, so

H.oO (2.70)

In particular,

Pox Poy Pz 0 0 0
Po Po P0

Poxpo - pox o Poypo - Pa0 Pa po - poz o Pox Poy Poz
2 2 2Pa Pa Pa Pa Po Po (2.71)
2Po, Po2 0 0 0 0

go2  go
2

PoxPoz Poy Poz go 0 0 0
P0 2 o Po 2 go Po 2  ."2 2l

Once reasonable estimates of Oo and Zo have been determined, they

can be used to gate the new observations.

2.2 Cluster Assignment

Now, each actual observation is compared to each predicted observation

and the "cost" of association (i.e., the cost of assigning an actual observation to "A

an existing cluster) is computed. This cost is based upon the Euclidean metric

in the attribute space. Because of the disparate scales of the various attributes,

each attribute of the observations is standardized by subtracting the attribute

minimum and dividing by the attribute range.

To minimize the likelihood of infeasible associations, actual observations

which fall outside the predicted observations' gates are assigned an arbitrarily

large cost. These gates are derived from the diagonal elements of the attribute

covariance matrix, -o. While the use of simple rectangular gates based on the

diagonal covariance elements may be conservative (depending upon the relative

magnitude of the off-diagonal terms), it is shown empirically to work quite well.

An association is considered to be infeasible if any single attribute of an ob- ',

servation is outside the predicted attribute's 6-o, confidence interval or if any

two attributes are outside the corresponding predicted attributes' 3-o confidence

intervals.

Nr
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The rationale for using a two-step voting process for determining wheth-

er an association is infeasible or not is based upon the probability of Type I and

Type II errors. In all the simulation scenarios run to date, each incorrect associ-

ation resulted in at least one attribute being far outside the predicted attribute's

3-o, confidence interval, therefore making the probability of a false association

(Type II error), even at the 6-o confidence level, quite small.

And while the probability of denying a correct association (Type I error)

at the 3-a confidence level is small, the likelihood of such an occurrence over the

life of the scenario must be considered. The probability of a Type I error is

equal to the probability that one or more observation attributes fall outside their
gates, or one minus the probability that none fall outside their gates. If p is the

probability that a single observation attribute is within its 3-a gate and q = I -p,

and n is the number of attributes, then the probability of disallowing a correct

assignment is

P(gating error) = 1 - (n)pnq° = 1 - pn. (2.72)

Applying Equation 2.72 to a typical 100-target scenario with four attribute types,

1.08 Type I errors would be expected in each observation frame, resulting in a
lost observation. By requiring that two attributes (out of four) be outside the

3-a confidence interval the probability of a Type I error is reduced considerably

(by a factor of 250). S

Once the costs of association have been computed, an assignment can
be made of actual observations to existing clusters so that the total cost of these

associations is a minimum. First, obvious assignments are made where only
one assignment is possible. Then, since the remaining numbers of clusters and

observations will likely be unequal, d'immy clusters or observations are formed
A

with association costs set to an arbitr,. - .y large value. The remaining assignment

is then solved (in this case using the hungarian algorithm [40]), and all clusters

receiving legitimate assignments are updated via the EKF as shown in Section 2.4.

All clusters for which no observation can feasibly be assigned are consid-
ered to have missed an observation and are annotated to indicate this. Obviously,

no updating of this cluster's state or state covariance is possible. Finally, all re-

maining unassigned observations are then passed to the track initiation algorithm

',.--

p - q1( -'i" V~ ~ h .
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discussed in Chapter 3. b

2.3 Track Termination

Conditions for terminating a cluster are now considered. Target tracks

may require termination because they have reached their impact point, been de-

stroyed, become obscured by the earth's surface or atmosphere, or simply because

they exit the sensor's field-of-view.

In the scenarios investigated in this study, all observation frames are

recorded at equally spaced intervals and all observations in the same frame have

the same time tag, it makes sense to terminate a cluster after some pre-specified

number of missing observations. There are several practical reasons for so doing.

First, there is no point (computationally) in continuing to propagate a cluster

which has either disappeared or been terminated due to a Type I error. After

some period of time it must be accepted that the target is no longer being tracked.

With fixed time interval observation frames a maximum number of consecutive

missing observations can be used as a limit.

Another reason for not propagating clusters indefiiitely relates to the

increased probability of Type II errors. As a cluster is propagated without up-

dating its state and state covariance, the state covariances will grow, making it

more and more likely that a false association will result. This limitation could

lead to another criterion for terminating a cluster. That is, the cluster could be

terminated when the state covariance elements exceed certain bounds. The main

drawback to this criterion, however, is that the magnitude of the covariance el-

ements are highly dependent upon the sensor-target geometry, so determination

of the bounds would be subjective.

In using the consecutive missing observations limit as a criterion for

terminating a cluster, the likelihood of incorrectly terminating an active cluster

due to a chance occurrence of the limit being exceeded must be considered. To

do this, an upper bound on the likelihood of an observation being missing must

be estimated. If the maximum number of missing observations allowed is n and

the probability of an observation being missing is q (assuming equally likely and

independent events), and p = 1-q, then the probability of incorrectly terminating
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acluster is
P(false termination)=(n +l p~qn+ 1 qn+ 1"  (2.73)

For a 100-target scenario with 5-second data intervals covering the first

six minutes of an ICBM launch, the following number of false terminations based
upon chance are expected: ..

Maximum Probability of Missing i

Missing 0.05 10.10 10.20
1 365.00 730.00 1460.00

2 18.00 72.00 288.00
3 0.89 7.10 11.20
4 0.04- 0.70 2.21•
5 0.00 0.07 0.44 "
6 0.00 0.01 0.09 ,

7 0.00 0.00 [ 0.02

Table 2.1: Expected Number of False Terminations

Other criteria for terminating clusters could consider whether the target i

was predicted to be beyond the field-of-view of the sensor, below the surface of :..,

the earth, or beyond the earth's horizon. However, these considerations are not
presently implemented in the simulation. '-:x

2.4 Track Update

Once an assignment has been made between the existing clusters and :'

the observations at the current observation time, to, the state for each cluster is :

ready to be updated. Using the linearized versions of Equations 2.7, 2.8, and 2.9, ,

go = go + Ko(oo - Ho~o) (2.74) Ile

and P5o = (I - KoHo)Po, (2.75)

where

KoPollo (HoPoH o + R)-' (2.76),',.,
,%o
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Again, R is used rather than R, in Equation 2.76 under an assumption that the

white noise process w(t) is homoscedastic. And, because the Extended Kalman

Filter is being used, go = 0, thus, Equation 2.74 becomes (assuming rectification

occurs at each state update)

go = Kooo, (2.77)

where

0o = 00 - 0:. (2.78)

The final item needed is the measurement transform matrix, Ho from

Equation 2.71. Evaluating H. at go and forming Ko according to Equation 2.76,

go = Kooo, (2.79)

SO = SO + go, (2.80)

and Po = (I - KoHo)Po. (2.81)

While the implementation discussed above is theoretically correct, mod-

ification of the EKF is often necessary to prevent filter divergence. One of the

primary causes of filter divergence is associated with errors which occur in the

computation of the state error covariance matrix [55,25]. In particular, round-

off errors in the calculation of this matrix can cause it to become non-positive

semi-definite-a theoretical impossibility.

In this investigation, the standard EKF formulation was found to suffer

from just this type of filter divergence. The state error covariance matrix immedi-

ately became non-symmetric and non-positive semi-definite during the first filter
r

update. This result was due to the extremely poor conditioning of the matrix

M = HPHT + R, (2.82) r

which must be inverted in Equation 2.76 as part of the EKF procedure. As a

result, the EKF is re-formulated to take advantage of an approach which main-

tains the natural symmetry and positive semi-definiteness of the state covariance

matrix.

7.
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2.4.1 Matrix Square Root

Since the a priori state error covariance matrix P is a symmetric positive

semi-definite matrix, it can be written as

P = W -T, (2.83)

where W is the matrix square root of P. Such a square root can easily be found

using Cholesky's Decomposition Algorithm [55]. Given the n x n elements of P,

the elements of W may be found using the following procedure

For i = 1,2,...,n

Wi, = ,- (2.84)k=l 1*

For= i + ,...,n

Wji k=1 (2.85)

Wii
The resulting matrix is a lower-triangular square root matrix. The state error

covariance update can now be reformulated using W instead of P to ensure that

P remains symmetric and positive semi-definite.

2.4.2 Covariance Update Reformulation

From Equations 2.75 and 2.76, the state error covariance update equa-

tion is

P = (I - KH)P, (2.86)

where

K = PHT(HPHT + R)- 1 . (2.87)

Equivalently,

P = P - 1HT(HPHT + R)-HP. (2.88)

Substituting WWT for P and WWT for P yields

** T = WW T _ WW THT (HWWT HT + R)-,HWW T. (2.89)
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Letting fF = THT and M = fT], + R, then Equation 2.89 becomes

WWT = W(I - FI-FT)VT .  (2.90)

Expressing (I - F] -I]T) as AAT, then

WWT = WAA T W T  
(2.91)

or

W = WA. (2.92)

The state error covariance update is found by first computing

w = P2 (2.93)

using Cholesky's Decomposition Algorithm, then forming

F = WTHT (2.94)

M= fFr + R (2.95)

A = (I - FiMF1 T )2 (2.96)

and * = WA. (2.97)

Since fFTf, + R is symmetric, symmetric inverse routines can be used to calculate

Obviously, P = *w T and

=s + K(o -H§), (2.98)

where

K = WFM-1 , (2.99)

which for the EKF becomes

§=Ko. (2.100)

This method ensures that P remains symmetric and positive semi-defi-

nite as expected.

A,,, -I



Chapter 3

Track Initiation

Once the track maintenance process has been completed, the remaining

unassigned observations are passed to the track initiation algorithm. These unas-

signed observations are most likely the result of new targets which may appear

in the sensor field-of-view because they were just launched, were just deployed as

a multiple independently-targeted reentry vehicle (MIRV), entered the sensor's

field-of-view, or emerged from Ling obscured by the earth's surface or atmo-

sphere.

The goal of this process is to form an initial estimate of a cluster's state

and state covariance using the minimum number of observations. Examination

of various orbit determination techniques in [12,24,29,301 has shown Laplace's p

method, using three observations of a target's range, range rate, azimuth, and

elevation, to be the most appropriate method for determining an initial state es-

timate in this study. How this method is applied will be shown in Section 3.3.1.

However, since three consecutive observations cannot be guaranteed, the unas-

signed data must be stored in a buffer to permit forming the necessary combina-

tions of observations.

As in the track termination process, the likelihood of missing an ob-

servation will determine the size of the buffer required. If a buffer covering the

last m observation frames is used, the probability of failing to correctly initiate a

cluster will be the probability that at most one observation of the target associ-

ated with that cluster occurs in the last m - 1 observation frames given that an

observation has been detected in the first observation frame. That is, P

P(initiation failure) = Oqm- + -1 m2 (3.1)

31
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where p is the probability of detecting an observation and q = 1 - p. M.

As with the track termination process, the expected number of failures

to initiate a cluster for various buffer sizes and probabilities of missing data is W

summarized below in Table 3.1. The table assumes a 100-target scenario.

Buffer Probability of Missing]
Size 0.05 10.101 0.20
3 9.75 l1.00 36.00
4 0.73 2.80 10.41
5 0.05 0.37 2.72
6 0.00 0.05 0.67

F 7- 1 0.00 0.01 0.16

Table 3.1: Expected Number of Track Initiation Failuresi

Once the size of the track initiation buffer is determined, the track

initiation process can be analyzed. Since the objective in this process is to form

observation triples which can be assessed for suitability, it is desirable to form all

feasible triples and select among these for the "best" overall assignment.

3.1 Problem Formulation

To find the "best" overall assignment for the track initiation problem

requires that the problem to be solved be defined specifically as well as in what

sense the solution is best. Briefly, the problem is to form triples of observations

(tracks) such that no observation is included in more than one track and that the

system dynamics are not violated. But there must be some means for assessing

the "cost" of associating an observation with a track. Then, the problem becomes

to choose a set of tracks which minimize this association cost subject to the

restriction that no observation be used in more than one track and that no system

dynamics be violated.

A measure of the quality of the tracks of targets in ballistic trajectories

is a function of the total specific energy, £. High quality is associated with low

values of £. The designers of an ICBM booster are faced with providing a system

~ ~bAVAN4~ ~ .~ -, N
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for delivering nuclear warheads to their targets for the minimum cost. Since

the cost is energy, it is reasonable to assume that each warhead will follow a low

energy trajectory to its designated impact point. Combining this assumption with

the fact that a ballistic trajectory is a minimum energy path in the gravitational

potential results in the conclusion that any misgrouping of observations into a

track will require a higher energy orbit. Therefore, if one pair of observations

defines an orbit and a second pair defines a similar orbit (with the mid-point

observation common to each pair) there should be no change in energy between

the two orbits if the three observations are properly grouped (in a conservative

force field). Since imperfect measurements are involved, the assumption is that

this change is smallest for properly grouped observations than otherwise.

The resulting problem can be formulated as a binary quadratic program.

Consider rm observation frames and n, unassigned observations in each frame

p = 1, 2,.. ., m. Observation i in frame p is linked with observation j in frame

q if and only if the variable xipjq = 1, otherwise, Xip.q = 0. The cost associated

with a given observation triple (pi, q3, rk) (i.e., the ith observation from frame p,

the jth observation from frame q, and the kth observation from frame r), Cipjqkr, ,.

is equal to the specific energy of the orbit defined by the observation triple if the

system dynamics are satisfied, and equal to infinity otherwise.

Problem BQP (Binary Quadratic Program)

m-2 m-1 m np nq nr

Minimize E E E E F, CipjqkrXipjqXjqkr (3.2)
p=i q>p r>q i=1 j=1 k=1

subject to _xipjq - X qkr = 0, p= 1,2,..., m - 2 (3.3)
i=1 k=1 q p +l., -1

r q + l,...,rn
j= 1,2,...,n.

rtl ,

E~xi ,jq <1, p= 1,2,...,m - 2 (3.4)

i=1 q= p +,...,m-

rnq

EXipjq 1, p =1, 2,..., m- 2 (3.5)
ji=1 q =p + 1..., -1

1 = 1 2,...,n,
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nqE-'Xjqk, < ,q =p + 1,..., m -1 (3.6): i

j=1 r=q+ ... "
k 19 12,..., n.

Xipjq, Xjqk binary, p= 1,2,... ,m - 2 (3.7)
q=p+1,...,m-1
r q + 1,...,m

i 1,2,..., pj = 1, 2,... ,
k 1, 2,..., n,.

Equation 3.3 (conservation of flow) ensures that if observation qj is paired with

some observation pi, then it is also paired with some observation rk, thus guar-

anteeing that a triple is always formed. And Equations 3.3 through 3.7 ensure

that each observation is assigned to at most one track, and vice versa.

Since integer programs can be difficult to solve efficiently and quadratic

integer programs even more so, the problem is reformulated into a binary linear

program by setting

Yipjqkr = XipjqXjqkr. (3.8) S

This variable ensures that only observation triples are formed. That is, obser-

vation i in frame p, observation j in frame q, and observation k in frame r are

linked if and only if the variable Yipjqkr = 1, otherwise, Yipjqkr = 0.

Problem BLP (Binary Linear Program)

M inim ze m -2 m-1 m fp fq n,
Minimize E E EE C pjqkrYipjqkr (3.9)

p=1 q>p r>q i=1 j=1 k=1

np S
subject to "Yi,q < 17 p = 1,2,...,m-2 (3.10)

i= q=p + 1,...,m- 1
r=q + ,...,m
j 1, 2 ,...,nq
k=l, 2,..., nr

Yipjqkr _5 1, p = 1, 2 ,...,m - 2  (3.11)
:i~~~l q = p+ 1..m-1¢

r = q + 1,.... , 7M'

k = 1,2,..., np "

", .



-2 Yijqk, < 1, p =,2,..., m - 2 (3.12)
k=1 q=p+l,...,m-1r=q+ l, ...,m

1 1= 1 2,... ,np
j =1, 2,..-., n.

Yipjqkr binary, p= 1,2,...,m - 2 (3.13)
q=p+1,...,m-1 
r q + 1,...,m
i =1,2, ...,npj =1,2,..., n.

k 1,2,..., n .

Lemma 1 Formulations BQP and BLP are equivalent.

PROOF: The objective functions of both programs are equivalent by the definition

of Yipjqkr. To complete the proof, any solution to either formulation must be shown
to satisfy the constraints of the other.

All feasible solutions to BQP satisfy BLP:

Multiplying both sides of Equation 3.4 by Xjqk, and applying Equation
3.8 proves that Equation 3.10 is satisfied. From Equation 3.3,

np Tn
r

EXipjq EXjqkr, p = 1,2,...,m-2 (3.14)
i=1 k=1 q=p+l,...,m-1

r q + l....,m
j =n,2..,,.

nr

which implies xIjqk, 1, q = p + 1,...,m- 1 (3.15)
k=1 r q + 1.... !

j1,2,...,nfq.

Again, multiplying Doth sides of Equation 3.15 by xipjq and applying Equation
3.8 proves that Equation 3.12 is satisfied. Finally, Equation 3.11 is shown to beI

satisfied by noting that

rtq

L~xipjq _<1, p = 1,2,...,m -2 (3.16)
j=1 q=p+ 1,...,m-1

.'we~~~~,.. np f~~.. '..
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nq nq

Xipjq2 =E ipjq, p= 1,2,...,m- 2 (3.17)
j=1 j=1 q=p+ 1,...,m -- 1

i =1,2,...,np

nq nq

ExipjqXjqkr :5 xipjq 2 , p= 1,2,..., m - 2 (3.18)
j=1 j=1 q = p+ 1,...,m - 1

r q + 1,...,m
i = 1, 2,..., nP
k =1, 2,..., nr.

i

All feasible solutions to BLP satisfy BQP:

Since all variables are binary, any feasible solution of Equation 3.8 can
be adjusted to satisfy

Xipiq Xjqkr, p = 1,2,...,m - 2 (3.19)
q=p+l l...,Im -
r = q+ I,....,m

= 1,2,..., fPj= 1, 2,..., nq
k = 1, 2,..., nr

such that there is no change in the objective function (Equation 3.2). Therefore,

from Equation 3.10,

nP

EXipjqXjqkr 1, p = 1, 2,..., m - 2 (3.20)
i=1 q=p+ 1,...,m-1 _

r=q,2,...,m

flr =fl+ 1, r
j= 1,2,..., nq
k = 1,2,...,n,.

np np np"

showing Equation 3.4 to be satisfied. Applying this same technique to Equations

3.11 and 3.12 proves Equations 3.5, 3.6, and 3.15 to be satisfied. And, combining
Equations 3.4 and 3.15 with Equation 3.19 shows Equation 3.3 to be satisfied, as
well. Therefore, the two problem formulations are equivalent. 0

.4
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3.2 Problem Reduction

One approach to solving the track initiation problem would be to form

all possible triples. However, the computational load for large problems would be

extensive, regardless of the method used to solve the binary linear program. To

help visualize the size of such a problem, consider a track initiation buffer of m

frames with the number of unassigned observations in frame p equal to np. Then

the number of possible triples is

m-2 rn-1 m

E E -npnqnr, (3.22)
p=1 q>p r>q

which has a worst-case complexity of O(m 3 n3 ), where n is the number of actual

targets. For a 100-target scenario with a buffer of seven observation frames,

such an explicit enumeration would involve 35,000,000 combinations. In practice,

however, most of the unassigned observations will be assigned to clusters within

the first three or four observation frames. This conclusion results from applying

the probability of a successful track initiation,

P(successful initiation) = j piqm -i, (3.23)

where p is the probability of a successful detection and q = 1 - p, to various

buffer sizes and probabilities of missing data. Results for 100 targets are shown

in Table 3.2. But even under these conditions, startup could require in excess

of 1,000,000 combinations be examined. Therefore, the track initiation process

Buffer Probability of Missing
Size 0.05 ] 0.10 [ 0.20

3 85.74 72.90 51.20
4 98.60 94.77 81.92
5 99.88 99.14 94.21
6 99.99 99.87 98.30

7 100.00 99.98 99.53

Table 3.2: Expected Number of Clusters Initiated

is begun by first reducing the number of allowable arcs based upon the system
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dynamics. A three-step process is used which begins by forming gates around

each observation to limit which observations can be linked (Section 3.2.1). For

each allowable pair of linked observations, a preliminary estimate of the specific

energy of the orbit defined by that pair is determined and evaluated for feasibility

subject to the system dynamics and assumed booster characteristics (Section

3.2.2). Then, pairs sharing a common mid-point are linked to form observation

triples and initial orbits are determined (Section 3.3.1). Each triple is further

evaluated to ensure that it remains feasible in terms of the system dynamics

and assumed booster characteristics (energy). Finally, from the remaining set of

feasible triples, the binary linear program defined on page 34 is solved (Section

3.4).

3.2.1 Single Observation Gating

The goal of this section is to determine which pairs of observations may

feasibly be linked subject to system dynamical constraints. To accomplish this

goal, estimates of pj, j, aj, and e3 and a gate for each estimate are calculated

given a single observation at time ti consisting of pi, i, ai, and ei. These estimates

and gates are formed for every observation such that ti < t. to assess links with

observations in each observation frame where ti < tj. Actually, this process

is much simpler than it might first appear since the targets being tracked are 1_

assumed to be acted upon only by the gravity of a spherical earth. Defining the

ECI vector to the target as r, the ECI vector to the sensor as r8 , and the range

vector from the sensor to the target as p, then the three vectors are related by

the equation

r = p + r., (3.24)

as seen in Figure 2.2.

The range vector, pi, can be estimated from a single observation as

(COS e, COS a,
P= PP = P COS ei sina, , (3.25)

sin ei

where jJi is the unit range vector. Therefore, the sensor position, ri, can be

estimated. And, since the only acceleration acting on either the target or the
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sensor is assumed to be due to the earth's gravity,

ii = - ri and ii = - --- ri. (3.26)ri3 ris,

Now, the target's position at time tj can be estimated through the use

of a Taylor series expansion as

rj = ri + rliji + ri- (3.27)

wherji = t - ti. While not enough information to estimate ii is available, it

is possible to make approximations to provide reasonable estimates and bounds

for those estimates.

Now, by definition

Pj = 11PA - ,/ Pp, (3.28) 0

where

pj = rj - rj.. (3.29)

Since the sensor's state at tj is known, p can be expressed (truncating the Taylor

series expansion after the acceleration term) as (3.30)

p = ri + iirji + ri--- rj (3.30)

= Ari + iTji - rjo, (3.31)

where

2r (3.32)

Therefore,

P3
2 = pj . pj = (Ari + iiTji - r3 o) • (Ari + iljrj - rjs), (3.33)

which, when expanded, yields

pi2 = A (ri • ri) + 2Arj,(r . hi) + T31
2(ri • ri) - 2A(r; • r3 ,) (3.34)

- 2rji(ii . rj) + rjs, ri. (3.35)

= (Ari)2 ± (v',rj,)2 - 2A(ri • r.) + rj,2 + 2rji(Ari - rj.) " i (3.36)

(Ari)2 + (vr 3 ,) 2 - 2A(ri. rj,) + r.32 + 2rjiIAr, - r 8 .,v cos/3. (3.37)

l._k9 l P -' %-dw *9**P -q't u' ' . "'' " """?"w
%

%1 "#*,# ',g .-. % W2~~, ' *%- %
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The estimate of pj is completed by making some approximations for the

terms depending on i,. Although the direction of the velocity vector is not known,

its magnitude can be estimated in the problem under consideration. This result

is due to the fact that the target is assumed to be operating in a conservative

force field and, therefore, its energy is a constant. If the maximum velocity at
burnout is assumed to be Vbo and it is also assumed that burnout occurs close

to the earth's surface where rbo is approximately the earth's radius, then the

maximum specific energy is
Vbo 2  It (£-2 ro(3.38)
2 rb,0

and the velocity at any subsequent time, such as ti, is given by

v i 2 (e $,). tp (3.39)

The only term still not known is the value of /3, the angle between

(Ari - rj,) and ii. The angle /3 can be approximated, however, by noting that in _

extreme cases/3 =1 ± /32, where f1 is the angle between (Ari - rj.,) and ,i and

/32 is the angle between ,i and ii. Therefore,

= cos-t l(Ar, - rl) (4

hAr - r,31

and

02 =h COS(3.41)= c~~osi ll"

Although 31 can be calculated directly, to calculate /32 it should be

noted that i'i. j, is simply the target velocity along the line of sight, vi1 , and that

vi," (,+ ii,) = i= + i . (3.42)

Therefore,

/32 = cos- P + (3.43)

From this development, the remaining uncertainty in the calculation

of pj results from not knowing the relative direction of the components of the
sensor and target velocity normal to the line of sight. The extreme values of/3

correspond to an assumption that these components are coplanar and in either
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the same or opposite directions. Therefore, the larger of /3 and /302 is used as the

nominal value and the smaller to determine the bounds for the value of pi. That

is

/3 = max(/1, /32) ± min(/31, /302). (3.44)

Now, to estimate p,

j = P. j10i"!cos 'Yj, (3.45)

where 7, is the angle between p, and .b. Since pi and p, are known, estimate

can be completed if the angle between pi and p can be deter. .- 'ed. Designating

this angle as 0, the distance between pi and pJ is

bp = p 2 + pj 2 _ 2pip, cos0. (3.46)

However, the angle -yj is approximately the angle between bp and pj and since

p 2 = 02 + pj2 - 2ppj cos7 ,, (3.47)

then

O 2 + j
2 _ pi

2

Cos-y (3.48)

pj2 PiPj COS 0 (3.49)

bpp)

Approximating/ij as (bp/rji),

Pj 2 PiPj cos0 (3.50)
P3 T.ji "

and 0 can be found by noting that

d.
sin0 - d.- (3.51)

P1

where d. is the distance traveled perpendicular to the line of sight between t"

and tI. Therefore,

Cos 0 p j (3.52)
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and
pi -2 , p, 2 - d 2

Pj - Pj*j (3.53)

To calculate d1 , the velocities and accelerations of both the target and

the sensor perpendicular to the line of sight are needed. Since vi has already been

estimated and vi, is known,

3i± = Vi - Vi12 (3.54)

= ( + (+ -,.,) (3.55)

and Viq8 = v , - (ij8,. P)2. (3.56)

Therefore, the maximum relative velocity perpendicular to the line of sight is

= vi. + Vi," (3.57)

so
Pi= 2 (' + ( i + ' .Pi)2 + Vis2 - (ri. Pi) 2. (3.58)

The approximate maximum distance moved perpendicular to the line

of sight will then be
• ""axi (3.59)

dma, = iL-4- Pi 2

where i,. is the relative acceleration perpendicular to the line of sight. And since

= - ri, 3ri + P-ri,, (3.60)rj3 ris3

then

= /l II 112 - (ji . i)2. (3.61)

The minimum distance moved perpendicular to the line of sight will result when

dmin± vi. - Vis± I - . (3.62)

The value of fj will, therefore, be bounded by the variance in the estimates of p1

and d1 , with a nominal value based on the average of drin± and dmax.

vfr.9,, r 9 .' ' .r,; '. :•.v-$ .-,%--:''. ; ' '".. .. -% ' ., ': --- .- V; ". "*" ". -- "* ... .. .-.,.::::: ."

-~ •A *, v m-% *-%.. 4 =*~4 - . i
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Unfortunately, the azimuth and elevation at time tj cannot be estimated

using a single observation since the target velocity vector cannot be fully esti-

mated. Therefore, it is assumed that the new azimuth and elevation, aj and

ej, are in the neighborhood of the previous azimuth and elevation, ai and ei

(i.e., a3 = ai and ej = ej), and only the gates for these measurements will be

determined.

The maximum angular change, 0 ,a,, will have components in both az-

imuth and elevation. However, since there is no way of knowing exactly which

direction the target is moving 0,,, is used as the gate for both the azimuth and

the elevation, resulting in a somewhat conservative estimate. Caution must also

be used in calculating Sa when e - 1 since a small change of 0ma, will yield

corresponding large changes in ba. In fact, the relationship for the maximum

change in a for a given 0 mx is

b 0max (3.63)
cos £i

and

6E Omax. (3.64)

Each observation in an observation frame is assessed in this manner to

determine an estimate and gate for each observation in the succeeding observa-

tion frames. Once this process is completed, each observation in the succeeding

observation frames is compared to the estimate and gate for that frame. This

process is O(m 2n 2)). If the observation satisfies the gating criteria, the pairing

is considered for addition to a list of allowable pairs.

3.2.2 Dual Observation Gating

Before being admitted to the list of allowable pairs, a dual observation

estimate is formed to determine the energy of the orbit defined by that pair.

Since there is some assumed maximum energy which can be achieved based upon

the known (or inferred) booster characteristics, any orbit satisfying this energy

restriction is considered allowable and the pair is added to the list. In the em-
pirical results to be presented later, only links between two observations of the

same target are likely, and the number of pairs formed appears to be 0(n).
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Because only the energy estimate is required and it is constant for a

given orbit, the estimates for rm and i, can be determined for any time t,,. In

this section, therefore, two complete observations of range, range rate, azimuth,

and elevation at times tj and t2 will be used to determine rm and im so the energy

and its error may be estimated.

Recalling

P=P pi=P cosesinai i =1,2 (3.65)
sin e,

and

ri = pi + ris, (3.66)

The range vectors r, and r 2 can be expressed using Taylor series expansions at

some common epoch tm as

1.. 2
ri = rM + rmTim + 1r, mi +2 " i = 1,2. (3.67)

Since

= -(3.68)

and the acceleration vector at time tm can be expressed using Lagrange interpo-

lation as

rm = rFi + r2 (3.69)

T .. T m..
- r - -r2 (3.70)
7"21 T21

a system of two equations with two unknowns results

Tim rm r- i7

r 2 - 2

which, when solved for rm and im yields( 2 TT m -i m~lm 2

Tm721  T.21  r,1  2 2 (3.72) k

im I mT2m2

721  T21  2 /

5%

)S
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From this estimate of the state, the specific energy of the trajectory

between these two observations can be estimated according to

F. = v,' 2 u (3.73)
2 rm

To determine the error bounds on this estimate of Fi, the same approach as used

to determine .t in Section 2.1.4 is applied. In this case,

Em= m(SM) (3.74)

and

Sm = Sm(n), (3.i)

where f2 is the observation set required for the state estimate and may be written
4'

fl = (pi, Pi, ai, ei, Si, ti)T. (3.76)

For the sake of analysis, the sensor states, Si,, and the times of the

observations, ti, are again assumed to be known exactly. The only uncertainty

is associated with the measurement of the observation attributes pi, j3 , ai, and

ci. It is further assumed that each attribute type is independently normally

distributed and homoscedastic. That is

p - N('Up 0,p), (3.77)

,- N(ua) (3.78)

ai - N(Ia,,a,), (3.79)

and ei '- N(y 4 ,,). (3.80) '9

Then, applying a Taylor series expansion and retaining only first-order

terms, it can be shown that

Pm JmRJmT, (3.81)

where
j 2  OS 2  

(3.82)

Dzz
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and
oap 00 00 00 0
0 a 0 0 0 0 0 0
0 0 or,, 0 0 0 0 0
0 00 a, 0 0 0 0

R= 0 0 0 0 a0 0 0 0 (3.83)
0 0 0 0 0 ah 0 0
0 0 0 0 0 0 o, 0
0 0 0 0 0 0 0 a,

Knowing Pm, this same approach can be applied to cm(Sm) to show

that
2 T

e = EmPmEm" T, (3.84)

where

Em = (3.85)

For this specific estimate, where

rm = 72m ( TlmT2m-3.8

rm = - rr 2 ) r2 - - - m 2m) (3.87)
T21 r2 3 7"7m r 21 r13 /

then

arm arm ar. arm arm arm arm arm
I-1 6P2 2 2 -62

Jm = a (3.88)
aim ai1  aim ai1  ap am ai2 ai2
AP1 a1  7al 1 aE P2  &e 2  &E2

where

arm r(l_\arr 3ji ( +rL 1i
ap - +

21  [ - 3Tim 72 m ) r ± y TM T'2m r - r 1  (3.89)

r- - Tri"r ") + rm r"
2m ( r i " )rj]  (3.90)

ar"m ar 0 (3.91)
0

4¢£¢ &a..:£ T 4 Z ,:: :' ;5;.'7<:4% '.4.:%:<.%%%:¢.%',',v<',vS
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armn~m T+
7  Tlm '2 m r -jn (3.92)

T7lmmm +_ ri -~ / ji\

P1 2-± 3 TlmT2m) P~ + L. ,TmT2m r, - I ) r, 1 (3.93)

arm 7 2m [ i n3i (O 1Oe - [\ r'r"') r- + LITlmT2 m rnI -irn (3.94)
ac T21 r1 ae r

2m Ii +k 3I ( I r,~ 1395
Pi L '~Tm- Tlm72m Ir,* -2L~ (

3 OE, r15 ae,i
arm 71Tm[ /1) r2 3 (k Or2')r] (.6

- r! 2 (i - p + + mT 2m r2 k2 )r2] (3.97)

Oa2 (31r24998)5aP

3a 77lmT2m 02 + 5Tlm'T2m r2 0 2~r 2] (.97)
T1 [ r2 rj2  3 j'

Orm T O r2 +3/I ( r2 r] (31 )

=a 21r TIm [(2 a r21 Pn ( - aa ) r2 l (3.02)

P2 [ T1 Tm2 m) aP + LIT'rmT2m kr2- 02/] 2(310

Ot - ~ [ TImT2m r25+ 7imT2m r2 ' C r2 311

i(\ m- i- ±-'m2 .P2+LZ 'm L (3.104)
-P2 T21mr2m3 1-2 2 'm7(r 2 92 r

ai 0-- )r (3.105)

3,rl'r~m rl+ LyTIM7m r,- 0

a~l 21 R r, O, r1 a4

3p,

~~~~~~~~± ,l72m 01*+ A- *f/ ~ ~ * *~% K~~~
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Orm i 1 1=_S~ Or1  3/i ( Or1  1aim [ -Tlmr 2 m + LA TlmT2 m r, a , rJ (3.106)

0 P2 "21 r ) )2 I

P 1 [ ' rim m2mJ Pj + L Tlmr2m ( FP1 2 ) r2] (3.107)

Or2 - 0 O 1  3i r.2~i 1  (3.108) a::@
Or, 1 1 R_ _\3 l r 1 5r2 3ruaim2 + a2{ l r r ,r

(21 R012/ J"2, (3.108)
P 1_ r_ 1  + LAlm2m) TlmT2 m r I r1 (3.110)

8cr 3  09 r 5  e

1im - 2  + - Tlm 2m  r2 - 2 r 2  (3.111)
-3 O~Tm +Tm~F L

aP2 "21 r2 aP r-- m2  (r a P2

T21 r 2 3m} r2r2 5

T -
(3.112)

P12

1i ' r 2  1 [ r2  1

Em= x y u, m~,,} (3.113) " '

IlTIMT2mI -+ T~m2,nIr2 -- r2) 13Oa2  r~ X r 2 'i 2 
5  Oa 2 ,

P92 T~ T m 2 L + LAT 72m r2 0192) r2J (3.1 4

T2 R r 3  i a r25 aa2m

bility - 1 - _mE)(
19E2 I2 L r23 ) m962 r2 

5 T2 (r 2 - 062 r 315

_P2 r{P + LP' ~ t 0 2
i l m ±mTmT2 y (r 2 2L- r2 l (3.116)

r2 1 R~ r2 3m) a--2 r 2  ' 0e-2 J

and

The resulting estimates of Em and oe are now used to assess the feasi-

bility of the observation pair. If

Em < E + 3og, (3.118)

then the observation pair is added to the list of allowable pairs.

r e -We
U 6.
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3.3 Track Selection

Once the list of allowable pairs is formed, the list of allowable triples

is developed. To link two pairs of observations to form a triple, each pair must

share a common observation. Therefore, to form a link, the second observation

of the first pair must be the same as the first observation of the second pair. The

list of pairs not ending in the current observation frame is evaluated for linkage

with pairs in succeeding observation frames sharing a common mid-point and for

each of these triples an initial estimate is computed. Once again, the energy of LA

the orbit is evaluated as an additional check to determine if the triple is feasible.

If it is, the calculated state and state covariance are stored and the triple is added

to the list of allowable triples.

If only 0(n) triples are considered, then it is possible to limit the com-

plexity of this phase to 0(n) by judicious application of indexing. This is due

to the fact that the list of allowable pairs need be traversed only once and since

it is known that the starting observation of the second pair is the same as the

ending observation of the first pair. Knowing the index of the second pair in the

list of allowable pairs and recalling the assumption that only one pair is likely for

a given observation permits each triple to be formed directly.

3.3.1 Initial Estimate 0

Given that an observation triple is formed, estimates of the target posi-

tion and velocity, r, and in, at some time tm < to are now calculated using three

observations, along with Em and oE as was done in Section 3.2.2. If the calculated

specific energy satisfies the energy restriction of Equation 3.118, the observation -

triple will be added to a list of allowable triples for subsequent consideration as a

new track when the binary linear program of Section 3.1 is solved in Section 3.4.

Proceeding with Laplace's method, the position vector, r, may be

written

rm = pmm + rms, (3.119)

and the velocity vector, im, is found by taking the derivative of Equation 3.119,

giving

i. =Mbm + PmPm + ims. (3.120)

I
U,
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The only term not directly available from the sensor measurement set is ,m ,
the time rate of change of the unit range vector. This term can be estimated,

however, by using Lagrange interpolation to find an expression for the unit range

vector
Tm2rm3 " TmlTm3^ Tml Tnt2

Pm T12T13 7.21723 P2 + P327.31 (3.121)T12T13
which, when differentiated with respect to tm yields

i -Tm2 n3.. Tm2 + Tm., + r*1 + T m2, (3.122)Pm --= .171 P, + -P2 +4 P3 "( .1 2
r1'1 217"23 T32T31

Moreover, if tm= t2,
7-ji Tji - T/21 ^ T21

P2 - Pi + P2 + T P31  (3.123)
7'2 1 7"3 1  T21Tji Ti731

everything needed to calculate the initial state estimate is available. It is not

necessary for tm to equal one of the discrete observation times, although, if it did ,

not, it would also be necessary to apply Lagrange interpolation to find estimates
of Pmp, m, rms, and i/ms. Therefore, it is simpler computationally to select
the central observation time as the reference -poch.

Proceeding as in Section 3.2.2, the final feasibility check is performed
on the observation triple using the energy restriction of Equation 3.118. That is,

E2 and a, are computed by forming

P2 RJ 2
T , (3.124)

where
Or 2 Or 2 Or 2  Or2

J2 =P2 ai2 Oi1 (3.125)0/2  Oi'2  Oir2  Or'2

OP2 Op2 Oi, Oi
and

ap 0 0 0 0 0 0 0
0 or 0 0 0 0 0 0
0 0 a, 0 0 0 0 0

- 0 0 0 a ,, 0 0 0 0 ( 1

0 0 0 0 0", 0 0 0
0 0 0 0 0a, 0 0
0 0 0 0 0 0 0U 0
0 0 0 0 0 0 0 or,
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Or2
=- P2 (3.127)

8r2 = 0 (3.128)0P2

Or2  ( O 2  '
-10 P2-O (3.129)

Or2 ( Oi2  )
- 0 P2 -2 0 (3.130)

Or2p P2 (3.131)

0/ 2 - P2 (3.132)

Oi2  ( 4 .4 (3.133)

do, - P2~ P2 2 +P2jj P20  313
-a Oa 2. 091 2  09a2 &f3

Pi2 ( 2 P O- 2 ) (3.134)

where

( - cos ej sin ai

si ei COs i i (3.135)
0 /

si cos i

(3.137)

19P 2 _T23 41~
S- r2 ,r31 0o, (3.138)

_ d i -T2 1  42 (3.139) I,

Oi2 _ - n Ob2
(a2 T 2 1 ji 002 (3.139)

2 P i- T21 0~2 (3.140)
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r2 21 0P30 _(3.141)
Oa3 Tj ir3 Oa 3  . 01

19P2 _ T21 C9P3

aE 3 rr 31 4963 
(3.142)

Then, the specific energy of the observation triple is

E = vM2 (3.143)

2 rm

and its variance is

12 = EmPmEmT. (3.144)

If the calculated energy, £,, satisfies Equation 3.118, the observation triple is

added to the list of allowable triples and the final stage of the track initiation

process is performed.

3.4 Cluster Initiation

With the set of allowable groups of observations to initiate clusters
determined, the groups which provide the "best" overall assignment must now

be chosen. To begin with, since a rather thorough examination of each triple

has been performed, it can be concluded that each triple satisfies the physical

constraints of the system dynamics and assumed booster characteristics, and

therefore, the final solution should maximize the number of triples selected. And ,

maximization of the total number of tracks initiated is ensured, because the total

specific energy is being minimized and the specific energy of a ballistic orbit

is negative. Selection is still subject to the overall assignment being feasible, -
however. That is, no observation can belong to more than one triple.

Therefore, if the initial list of triples is feasible, the assignment is com-

plete and a new cluster is initiated for each triple. If the overall assignment is

infeasible, however, one or more triples must be removed until the assignment

is feasible. Since this process may result in more than one feasible solution, a

means of discriminating among these to select the "best" one is also required. %0

Using the specific energy of the estimated orbits as the discriminant as

developed in the binary linear program of Section 3.1, the set of clusters with
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the minimum total specific energy is defined to be the "best" solution. Such

a discriminant is possible because targets on ballistic trajectories follow mini-

mum energy paths through the geopotential. Any misgrouping of observations is

assumed to result in a higher energy orbit.

To actually determine the optimal cluster assignments, the initial set

of observation triples is evaluated for feasibility. If it is not feasible, a branch-

and-bound procedure [28] is initiated which performs a depth-first-search for the

optimal solution. One cluster is removed from consideration at each level and

a branch is fathomed when it becomes feasible. The feasible solution with the

lowest total specific energy is designated as the optimal solution and a cluster is

initiated for each active triple. The worst-case complexity for this last phase is

0(2 n ) if the entire branch-and-bound tree must be searched.

Through the multi-step elimination process the original binary linear
program, of size O(m 3 n 3 ), is seen empirically to be reduced to O(m 2n 2) by de---' %

termining which triples are dynamically feasible. The final process of selecting

approach.

Once the track initiation process is complete, all new clusters are added
to the current list of clusters to be updated through the track maintenance process

and their observations are removed from the pool of unassigned observations.

.1'

g4'
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Chapter 4

Analysis of Results

4.1 Simulation Scenarios

To demonstrate the effectiveness of the method described in the last

two chapters, five scenarios are developed. These scenarios are based upon the

following assumptions:

* Launch points are randomly generated in the area 60'-70' East longitude,

50o-60' North latitude, an area covering known Soviet ICBM fields,

" 100 targets,

" Impact points are randomly generated in the area 80'-120* West longitude,

30'-50' North latitude, an area covering most of the continental United

States,

" Each missile has identical characteristics, quantified by an instantaneous

Qbo value of 0.90 at launch,

" Launch occurs randomly over the first 30 seconds of the scenario, and

" A spherical rotating earth with no atmosphere,

" Simulation begins at 04:25:07 UTC 16 July 1986.

These scenarios assume that an ICBM attack is being observed from a single

ICBM field which normally contains 50-100 ICBMs geographically dispersed to
prevent multiple ICBMs from being destroyed in a single strike. The value of

Qb0 was based upon data for existing Soviet ICBMs for which a ballistic missile

54
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defense is being contemplated'. From [121, knowing the maximum free-flight S

range angle, , 2 sin( /2) (4.1)

2 sin(T/2)'
Qbo =1±+sin( P/2)" (4.1)

Each scenario uses the same launch points and launch times and pairs
the launch points with impact points from a fixed set of 100 impact points. The

scenarios differ in which impact points are assigned to a given launch point. The

trajectories typical of these scenarios are illustrated in Figure 4.1 which shows a

polar view of the complete trajectories of all 100 targets used in Scenario 1.

The sensors viewing the launch scenarios are placed in modified Molniya
orbits which allow all targets to remain in view of the sensors for the duration

of each of the five scenarios. The specific orbital elements used are given in

Table 4.1.

Incli- Ascending Argument Mean Eccen- 1 Mean
Sensor nation Node of Perigee Anomaly tricity Motion]

1 85.0000 70.0000 281.3211 132.4823 0.3689374 8.065369
2 85.0000 140.0000 281.3211 132.4823 0.3689374 8.065369
3 85.0000 210.0000 281.3211 132.4823 0.3689374 8.065369

4 85.0000 350.0000 281.3211 132.4823 0.3689374 8.065369

Table 4.1: Sensor Orbital Elements

Data from each sensor is provided at five-second intervals for the first
six minutes of each attack scenario. This six-minute period covers the boost

phase and post-boost phase prior to reentry vehicle deployment. This period is
of particular interest in an SDI scenario because it is easier to destroy the targets

before reentry vehicle deployment due to the smaller number and larger sizes of

the targets.

Figures 4.2 through 4.5 illustrate the complexity of the problem. These
figures give a good indication of the high densities of the fargets being tracked. -.-

'Aviation Week P Space Technology, March 14, 1988, page 153. 0

.. :.......... ....................
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Figure 4. 1: Polar View-Scenario 1
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They also show large numbers of target crossings and similar tracks which typi-

cally cause the most difficulties for multi-target tracking algorithms. Each figure

presents the view from one of the four sensors for the first six minutes of the

ICBM attack in Scenario 1. All 100 targets are present in each view. At the

bottom of each figure, the information pertaining to the sensor vantage point is

displayed, showing the latitude and longitude of the satellite sub-point along with

the altitude of the satellite above the earth's surface and the simulation time of

that position. 0

/ pa

NN

76.0 N 90.6 E 7287.5 km 0.00 sec

Figure 4.2: View from Sensor 1-Scenario 1
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bP

76.0 N 160.6 E 7287.5 km 0.00 sec

Figure 4.3: View from Sensor 2-Scenario 1
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76. 0 N 129. 4 W 7287.5 km 0.00 sec

Figure 4.4: View from Sensor 3-Scenario 1
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Figure 4.5: View from Sensor 4-Scenario 1
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Four variance sets and four levels of missing data were considered during
the course of this investigation to examine the effects of high and low quality data.

The scenario variances are listed in Table 4.2. The four levels of missing data are

0, 5, 10, and 20 percent.

Variances
Variance Range f Range Rate Azimuth Elevation

Set (meters)2 (meters/second) 2 (radians)2 (radians)2

1 10.0 1.0 10- 7  10- 7

2 10.0 1.0 10- 8 10-8

3 10.0 1.0 10- 9  10- 9

4 10.0 1.0 10 - 10 I0 - 10

Table 4.2: Scenario Variances

To evaluate the performance of the temporal clustering algorithm, two

sets of variances and levels of missing data are used. The first case, representing

expected values for the measurement variances and levels of missing data, uses

Variance Set 3 and 5 percent missing data, while the second case, representing
worst-case values, uses Variance Set 1 and 20 percent missing data.

4.2 Discussion of Results

The temporal clustering procedure described in the previous two chap-
ters is implemented in Pascal on the Cray X-MP/24 at The University of Texas

at Austin's Center for High Performance Computing. A listing of the code used

is included in Appendix B. Before the code can be run, however, determinations

of the size of the track initiation buffer and the maximum number of missing ob-

servations for track termination are necessary. Based upon the results presented

in Table 3.1 on page 32 and Table 2.1 on page 27, a track initiation buffer of seven

observation frames and a maximum of five consecutive missing observations was

selected as a termination criterion for the maximum value of 20 percent missing

data, since the expected number of track initiation failures and false terminations

over the life of each of the scenarios investigated is less than one.
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Tables 4.3 and 4.4 are summaries of the results of the twenty simulation b

runs (five scenarios with four sensors each) used to investigate the performance

of the temporal clustering algorithm for both the expected and worst-case values

of measurement noise and missing data.

Scenario/ Perfect Unassigned ErrorsI
Sensor Clusters Targets Observations [Termination Gating Observations/

1/1 100 100 0 0 0 6582/6944
1/2 100 99 1 0 0 6588/6944
1/3 100 100 0 0 0 6591/6944
1/4 100 100 0 0 0 6647/6944
2/1 100 99 1 0 0 6582/6944
2/2 100 99 1 0 0 6588/6944
2/3 100 100 0 0 0 6591/6944
2/4 100 100 0 0 0 6647/6944
3/1 100 99 1 0 0 6582/6944
3/2 100 99 1 0 0 6588/6944
3/3 100 100 0 0 0 6591/6944
3/4 100 100 0 0 0 6647/6944
4/1 100 99 1 0 0 6582/6944
4/2 100 99 1 0 0 6588/6944 P
4/3 100 100 0 0 0 6591/6944
4/4 100 100 0 0 0 6647/6944
5/1 100 100 0 0 0 6582/6944
5/2 100 99 1 0 0 6588/6944
5/3 100 100 0 0 0 6591/6944

5/4 100 100 0 0 0 6647/6944
Total ]12000 1992 8 0 1 0 132040/138880]

Table 4.3: Summary of Results-Nominal Values

The first column of the table indicates the scenario number and sensor

number of the observations. The next two columns show the number of perfect
clusters and perfectly clustered targets for each run. A cluster is considered

perfect if all of its observations are from a single target. No imperfect clusters 0

were encountered in any of the runs examined. A iarget is considered perfectly

clustered if all of its observations are contained in a single cluster.

On average, each run in the nominal case contained less than one imper-
fectly clustered target, resulting from a single observation being excluded from I

%4
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(Scenario/f Perfect [Unassigned Errors
Sensor Clusters Targets Observations Termination J Gating Observations

1/1 102 97 1 1 1 5556/6944
1/2 101 99 0 0 1 5568/6944
1/3 101 99 0 1 0 5536/6944
1/4 101 98 2 0 1 5561/6944
2/1 102 97 1 1 1 5556/6944
2/2 102 98 0 0 2 5568/6944
2/3 101 99 0 1 0 5536/6944
2/4 101 98 2 0 1 5561/6944

3/1 102 97 1 1 1 5556/6944
3/2 101 99 0 0 1 5568/6944
3/3 101 99 0 1 0 5536/6944
3/4 101 98 2 0 1 5561/6944
4/1 102 97 1 1 1 5556/6944
4/2 102 98 0 0 2 5568/6944
4/3 101 99 0 1 0 5536/6944 _
4/4 101 98 2 0 1 5561/6944
5/1 102 96 2 1 1 5556/6944
5/2 101 99 0 0 1 5568/6944
5/3 101 99 0 1 0 5536/6944
5/4 101 98 2 0 1 5561/6944

Total 2027 1962 16 10 17 J 111105/138880

Table 4.4: Summary of Results-Extreme Values

a gate either during the track maintenance or track initiation phase. The fre-

quency of occurrence is shown in column four of Table 4.3. However, all clusters

developed were perfect. Considering the large number of target measurements

observed (132,040) in the twenty cases evaluated, losing only eight observations

is an exceptional performance.

Using the worst-case values, each run averages one split cluster and

two improperly clustered targets, still quite good performance. These failures

result from one of three causes and their frequencies are shown in columns 4-6 of

Table 4.4. The first cause is the result of an observation not being assigned to any

cluster. In five cases, two observations were lost during the track initiation process

because of a failure to obtain three observations in the seven-frame track initiation

buffer. Each of these failures could have been avoided by simply expanding

the size of the buffer but the increased computational complexity and storage

rN
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overhead may not merit such a change. This result is not unexpected based on

the numbers in Table 3.1.

Additionally, one observation of a target was not included in any cluster

because the problem reduction phase of the track initiation process incorrectly

eliminated it from consideration in a feasible track based upon system dynamics.

The remaining five unassigned observations were the result of correct assignments

being discarded during the track maintenance process because they failed the

gating criteria.

The other reasons for incorrectly clustered targets are due to track ter-

mination as the result of a termination or gating error. A termination error occurs

when a track is terminated because more than the maximum number of missing

observations occurred. Again, this type of failure could be avoided by increasing

the maximum number of missing observations with a corresponding trade-off in

computational cost. Increasing the buffer size to eight observation frames would,

therefore, have eliminated ten tracking errors.

A gating error occurs when a track is terminated because the estimate

of a target's state is sufficiently far from the true state to prevent the correct

observations from falling within the observation gates. All seventeen gating errors

occurred immediately after track initiation during the EKF stabilization phase.

These gating errors could be reduced (or effectively eliminated) through either

reduced measurement noise (improved sensor characteristics) or improved orbit

determination procedures. This conclusion is supported by the total lack of gating M_

errors in the cases using nominal values of measurement noise and missing data. . ;.

And, as expected, lower measurement noise results in better estimates of

the target state. The effect of various levels of measurement noise on the estimates

of target position and velocity are illustrated in Figures 4.6 and 4.7. Each figure

shows the difference between the true and estimated position or velocity for the

four levels of measurement noise considered. All data is for Scenario 1, Sensor 1, S

Cluster 1.

As a final test of the robustness of the temporal clustering algorithms,

biases were introduced into the sensor attitude and, independently, in the sensor

clock and applied to the worst-case runs. An attitude bias is possible due to

,'tz-. , r ;%z,9 :,.<."t.<... " . '' ,,', ¢ ,, '.; €. .:',:, '';,',: .;, "'; € . :." "': - '. '" ,:¢.?.:," ,,:g.'.
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Figure 4.6: Position Error Due to Measurement Noise
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Figure 4.7: Velocity Error Due to Measurement Noise
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precessional and nutational effects of the sensor platform during the course of

its orbit. A constant bias of up to 60 arc seconds results in only two additional

unassigned observations in the twenty runs considered, both failures in the track

initiation process. These biases are much larger than one would expect in prac-

tice, since the slowly varying effects would be expected to be small and daily

observation of the sensor platform attitude by ground personnel would allow the

development of models to remove most of the remaining bias.

A clock bias would result in the sensor thinking it was in a position dif-

ferent from that indicated by its onboard ephemeris. Typically, with the atomic

clocks available on most satellites these biases would be on the order of mi-

croseconds or, at worst, milliseconds. Yet, the temporal clustering algorithms

performed exactly as shown in Table 4.4 with biases of up to 0.5 seconds, far

above any bias which could reasonably be expected.

While the temporal clustering algorithm performs admirably even un-

der these adverse conditions of attitude and clock biases, the effects on the state

estimate and state covariance are considerably degraded, as can be seen in Fig-

ures 4.8 through 4.11. Each figure shows the difference between the true and

estimated position or velocity for various levels of bias. All data is for Scenario 1,

Sensor 1, Cluster 1. Obviously, while the algorithms perform well under these cir-

cumstances, it is highly desirable to reduce the sensor biases as much as possible

to attain the high degree of accuracy necessary to direct a proper response.

1
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Figure 4.8: Position Error Due to Attitude Bias
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Figure 4.10: Position Error Due to Clock Bias
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Chapter 5

Conclusions

I:-,

The temporal clustering algorithm developed in Chapters 2 and 3 does

indeed accomplish the initial objectives that it

e Perform both track initiation and track maintenance and

* Permit processing of data in real time while minimizing

- Computational complexity and -

- Data storage requirements.

Through prudent application of existing solution techniques in astrodyn- iics,

mathematical programming, numerical analysis, and statistical estimation, an -

integrated solution is developed which is not only capable of performing both

track initiation and track maintenance, but also improves on previous work in
the fields of multi-target tracking and clustering to effectively track large numbers

of targets in real time.

In fact, the duty cycle for each run (the ratio of the total execution
time to the elapsed scenario time) is only 4.4 percent. Execution time for all runs

averages 15.9 CPU seconds per run. The portion of that time spent in each major

procedure discussed in Figure 1.2 is provided in Table 5.1. Considering that only

17.5 percent of of the total execution time is taken up by algorithms of complexity

worse than O(n) and 76.7 percent is devoted to algorithms which are vectorizable

and capable of being run in parallel, the timing results are quite impressive.

In fact, empirical results from runs with 20, 50, and 100 targets showed the

complexity of Prrform, Ch(Lst rr A.ssignimcnt and Pcrfori Track Initiation to be

only 0(n') an(l 0(n), respectivelv.

6.q 7.'.e
69',
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Percent Total
Procedure Execution Time Complexity

1) Read Observation Frames 5.8 O(k)
2) Forecast Existing Clusters 47.5 O(n)
3) Calculate Assignment Costs 6.5 0(n 2 )
4) Perform Cluster Assignments 8.5 0(n')
5) Update Clusters 29.2 O(n)
6) Perform Track Initiation 2.5 0(2 n)

I

Table 5.1: Timing Results

It should be cautioned, however, that these timing results apply only
to the specific case investigated in this study. Any combination of measurement I

types and system dynamics which does not permit a significant reduction in the

size of the binary linear program (as was done in Section 3.2) may not be able

to satisfy the requirement that the problem be solved in real time. In such

circumstances, more sophisticated methods of solving the binary linear program

may be implemented to reduce the computational complexity, although there is
no guarantee that these improved techniques will allow real time processing in .

all cases.

The limitations due to computational complexity and data storage re-

quirements are reduced through the judicious application of existing algorithms

for filtering (the Extended Kalman filter), assignment (the Hungarian method),

and quadratic programming (branch-and-bound) while taking full advantage of

the temporal component of the data and system dynamics. And, as seen in Sec-

tion 2.3 and at the beginning of Chapter 3, additional reductions in complexity

and data storage requirements are possible if the missing data rate is kept small.

A most remarkable feature of the temporal clustering algorithm is its

ability to function well when faced with low data, rates and high levels of both

missing data and measurement noise. Even in the runs examined using the worst-

case variances (Variance Set 1) and 20 percent missing data, the temporal clus-

tering algorithm successfully clustered nearly 100 percent of the over 110,000

observations available. And for tracks with four or more observations all but 10

. I;.
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out of 2000 targets were tracked correctly throughout the scenarios, and those

were the result of exceeding the size of the track termination buffer-something

which can be avoided by simply increasing the size of the buffer by one frame.

And even the addition of biases in the sensor attitude or clock to levels well in

excess of those which can be reasonably expected failed to significantly affect the

performance of the algorithm.

5.1 Future Research

There remain areas in which the temporal clustering algorithm can be

improved or the scope of its application broadened. More attention can be applied

to improving the overall efficiency of the tracking process through the applica-

tion of state-of-the-art filters such as those discussed by Kaminski, Bryson, and

Schmidt [35] and Verhaegen and Van Dooren [57] or simplification of the filters .

through the application of constant gain Kalman filters as discussed by Blackman

[131.

In addition, significant advantage can be gained by exploiting the par-

allel structure of many existing computers and the application of pipelining as

discussed by Allen, Kurien, and Washburn [1]. For example, considerable im-

provement in processing time can be achieved by developing a parallel structure

capable of independently tracking each target, especially since massively parallel

architectures with 65,536 processors exist today. This is particularly true consid-

ering that over 75 percent of the total execution time for the temporal clustering

procedure is used by the forecasting and state update algorithms. These func-

tions can easily be performed on separate parallel processors for each cluster. -1

Use of vector processing is also helpful when integrating the large state and state

covariance vectors in the forecasting algorithm.

And while the case presented assumes a spherical earth with no drag

and no thrust, the method can be readily extended to cases using higher order

gravitational potentials and atmospheric drag by simply reformulating the fil- ,",

ter and track initiation gating process to specifically account for these effects.

And, depending upon the specific system dynamics. it mdty also be necessary to

choose another cost coefficient for the objective function of the binary linear pro-

. .. . -4 tt S
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gram. Reformulation to account for other measurement combinations, such as

the angles-only case, is possible, although preliminary investigations have shown

this case to be somewhat more complex due to marginal observability. Investiga-

tions of vehicle thrust and maneuvering are certainly possible, as well, although

the reformulation will likely be considerably more difficult and require the use of

adaptive filtering techniques. Additional investigations of algorithm performance

in the face of changing measurement covariance due to sensor degradation or

failure are also possible through the application of adaptive filtering.

And, finally, the extension of this temporal clustering approach to the

broader issue of multi-sensor correlation should be straightforward. Although

issues of distributed processing [21,22,23] need to be examined in detail, it appears

that once a cluster is established, its state estimate and state covariance matrix

can be transmitted by each sensor to a central processor for correlation with data

from other sensors. Transmission of this minimal amount of data significantly

reduces the bandwidth required for data exchange and the correlation process

can then apply gating and assignment procedures quite similar to those used in

the single-sensor case.

While the temporal clustering process as developed here is specifically

tailored for a single application, prudent modification of the application-specific

portions should allow it to be applied to other ballistic tracking problems or even

those in the areas and fluid dynamics or particle physics.

"Sc
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Appendix A

Simulation Design

To permit realistic assessment of the approach presented here, some

means of providing a set of target measurements was necessary. To accomplish

this objective, a data generating program (GENDAT) was developed by the au-

thor and Stuart H. Smith. A flowchart of GENDAT is presented in Figure A.1.

GENDAT was designed to generate both the target and sensor states

using a Runge-Kutta 4(5) integrator and a user-provided force model. Input to

GENDAT begins by determining the booster characteristic thrust, Qbo, wiere

Qbo - 'bo2rb° (A.1)

and whether high or low trajectories are to be used for the targets. Then, the

launch time and the launch and impact points for each target are input. Finally,

the Keplerian orbital elements for each sensor are input.

An initial state estimate is then determined for each target at its spec-

ified launch time by computing the trajectory necessary to reach the assigned

impact point from the designated launch point. Initial state estimates for the

sensors are also determined by converting the orbital elements at the initial sim-

ulation time.

Once all the initial states are calculated, GENDAT begins forming ob-

servations of each target from each sensor while the target is in view. Currently,

the target is in view if it has launched and not yet reached its impact point. No

additional considerations such as sensor field-of-view, sensor range, or obscura-

tion by the earth's limb are yet implemented. Observations are calculated using

the transformation described in Section 2.1.4.
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Read Booster
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Measurement Noise
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No Dn? Yes End

Figure Ai : GENDAT Flowchart t

For each measurement attribute, a Gaussian random variable is com-puted to allow for expected measurement noise. These variables are N(0, 1). In ,.

addition, a single uniform random variable is also computed for use in simulating

the stochastic nature of detecting an observation. "

The target and sensor states are output to separate files, the former ,

to be available for comparison with estimated target states, the latter to act ,%"

as the satellite ephemeris. The target measurements and associated random ::

variables are output to a third file. The separation of the true measurements from

....
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the measurement noise allows the temporal clustering algorithm to incorporate

differing measurement variances at runtime.

After all observations are formed and the resulting data is output, the
target and sensor states are integrated to the next observation time and the

process is repeated until the simulation end time or all targets have reached their

destinations.

P-A
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Appendix B

Program Listing

Program TCluster(tmdata, ssdata,tsdata,tcldata,trudata, csdata, input,output);
{ Author: TS Kelso
{ Original Version: 26 January 1987 }
{ Current Revision: 26 May 1988 }
{ Program Description: Program performs temporal clustering on time

successive data frames using an assignment from last
member of existing clusters to observations. Track
initiation performed using quadratic program. Assumes
range, range rate, azimuth, and elevation

measurements.
(*#A+:R- *)

const
clusters = 201; {Maximum allowable clusters + 1}

max-pairs = 400; {Maximum number of pairs in PerformClusterInitiation}
nest = 6; {Elements in state vector}
block = 3; (Axes in ECI coordinate system}
nstack = 42; {Elements in stacked state vector = nest + nest-2}
nterms = 8; {Maximum number of terms in estimates}
attributes = 4; {Maximum number of possible measurement attributes}
bad = 5.0; {Metric value for bad assignment = attributes + 1}
framel = -6; (Data required for initial estimate = framel..0}
max-prop = 5; (Maximum number of propagation intervals}
max-missed = 1; {Maximum number of missed gates allowed}
zero = i.OE-14; (Machine epsilon for real = double}
big I.OE+14;
mu = 3.9860064E+14; {Geocentric gravitational parameter, m-3/s-2}
small = 1.OE-12; {RK78 integration control factor}
pi = 3.1415926535897932;
max-energy -3.437E7; {Maximum specific energy, meters-2/second-2}

type
span = framel..O;
atr-vector = array [O..attributes] of real;
obs-vector = array (1..attributes] of real;
statevector = array [1..nest] of real;
stacked-vector = array [1 .nstack] of real;
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limits =array El. .2] of obs-.vector;

bvector =array El.. clusters) of boolean;

ivector =array [0.. clusters) of integer;
frame =array Dl -clusters) of atr-.vector;
.J..matrix =array El. .nest,l. .nterms) of real;
ER..matrix =array El. .xterms. .nuterms) of real;

P-.matrix =array El. .xest,l. .nest) of real;

H..matrix =array El.. .attributes,l1. .nest] of real;
K..matrix =array El. .nest,l. .attributes) of real;

R-matrix =array El..attributes,l. .attributes) of real;

S..matrix =array [span) of state.vector;
0-.matrix =array [span] of obs-vector;

M~matrix = array El. .clusters~l. .clusters) of real;

states =record
number integer;
time real;
values state-.vector;

end; {record}
measures = record

target,sensor :integer;
time :real;

obs,error :obs-.vector;

missing :real;

end; {record}

EDI boolean; (End of input} -

sensor,sen-.nr,max.target,
next-.target ,last-.target ,time integer;e
max-time,min-.time,tbias,
step ,missing.f lag ,missing-limit real;

nr-.unassigned ,nr-.obs,

nr..clusters,nr.active,nr-.inactive array [span] of integer;

frame-.time array [span] of real;
nr-.missing~convert,
col-.basis,row..basis ivector;

status,observation,targets array [span) of ivector;

assigned array Eframel. .1] of bvector;

R,bias obs..vector;
span-.limits limits;
next atr-vector;

rkf array [1. .59) of real;

Sxs array [span) of state~vector;
IdentityQ-k P_matrix;

R-.k i~matrix;

metric,ametric M~matrix;
Rvar array D..3] of ER-.matrix;

attr array [span) of frame;
est,gate array El. .clusters) of obs-vector;

n.
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S: array [1..clusters] of statevector;
P array [1..clusters] of P.matrix;

stan array [span,. ..clusters] of obs-vector;
atr-limits array [framel..1] of limits;
current-obs measures;

currentsensor,current-target states;

tmdata file of measures;
ssdata,tsdata file of states;
tcldata,trudata,csdata text;

times array [0..93 of integer;
last,total array [0..9] of real;

{*** Timing Functions *******************************************************}

Function Second : real; FORTRAN;

Procedure InitTimes;

va~r
i : integer;

begin
for i := I to 9 do

begin
last[i] 0.0;
totalEi] 0.0;
times[i] 0;
end; {for i}

end; {Procedure InitTimes}

Procedure StartTimer(arg integer);
begin
last[arg] := Second;
end; {Procedure StartTimer}

Procedure StopTimer(arg : integer);
var

elapsed : real;
begin
elapsed := Second - last[arg];
total[arg] total~arg] + elapsed;
times[arg] times[arg] + 1;
end; {Procedure Stop-Timer}

Procedure ReportTimes(arg integer);
var
i : integer;

begin
for i := I to arg do

begin
Write(i:2,') ');
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case i of
1 : Writeln('Input Data');
2 Writeln('Forecast');
3 Writeln('Calculate Metrics');
4 : Writeln('Perform Cluster Assignment');
5 Vriteln('Perform Cluster Initiation');

6 : Writeln('Update Estimates');
end; {case}

Writeln(' Elapsed time = ',total[i]:7:4,
1, Average time = ',total[i)/times[i]:7:4,
1, Percentage = ',1OO*total i)/total[0J :4:1, "I' );

end; {for i}
Writeln(' Total time = ',total[O]:7:4);
Writeln;
end; {Procedure Report-Times}

{*** Global routines * *** ****** *** **}

Function IMin(argl,arg2 : integer) : integer;
begin
if argl < arg2 then

IMin := argl
else

IMin := arg2;
end; {Function IMin}

Function IMax(argl,arg2 : integer) : integer;
begin
if argi > arg2 then

IMax : argl
else

IMax := arg2;
end; {Function IMax}

Function RMin(argl,arg2 : real) : real;
begin

if argi < arg2 then
RMin := argi

else
RMin := arg2;

end; {Function RMin}

Function RMax(argiarg2 : real) : real;
begin
if argl > arg2 then
RMax : argl 01%

else 4
RMax := arg2;

end; (Function RMax}

lag-
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Procedure Increment(var arg integer);

begin
arg := arg + 1;
end; {Procedure Increment}

Procedure Decrement(var arg integer);
begin
arg := g - 1;
end; {Procedure Decrement}

Function Missing(target,sen integer;
time,val: real) : boolean;begin

Missing := (val < missing-limit)
or (target > max-target)
or (sen <> sensor)
or (time < min-time);

end; {Function Missing.

Procedure EchoTrueData(target,sen integer;

time,val real);
begin
if (sen = sensor)
and (time >= min-time)
and (target <= max.target) then

begin
while (target - last-target) > I do 8

begin
Write(trudata,' ');Increment(last_target);

end; {hile}
Increment(lasttarget);
if val < missing-limit then
begin

Write(trudataO:4);
end {if}

else
begin
Write(trudata,target:4);
end; {else}

end; {if}
end; {Procedure EchoTrueData}

{*** Initializations *******************************************************}

Procedure InitProgram; {System Specific-
var
ij,k,atrvarset integer;
filename packed array[1..12) of char;

IV
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begin
(Select data file to clusterl
Readln(filenaue);

(Determe attribute and clock biases}
for i :=1 to attributes do

Readln~bias Ci));

Readln~tbias);
(Determine observation sensor}

sensor :=Ord~filename[2)) -OrdC'0');

(Set variances}
var-set :=Ord(filename[31) OrdC'0');
for i 1= to attributes do

for j :=1 to attributes do
R..k~i,j] : 0.0;

R..k[2,2) 1.0;
k[k3,3) ExpC-Cvar-.set+2)*LnC1O.0));

R-.k[4,4] Exp(-(var-.set+2)*Ln(10.0));
for atr 1 to attributes do

R~atr) : Sqrt(R-k~atr,atr));
for i :=Ito 3 do
for j :=1 to nterms do

for k :=1to nterms do
Rvar[i,j,k) : 0.0;

for atr :=Ito attributes do
begin
Rvar[l,atr~atr) R-.k~atr,atr];
Rvar[2,atr,atrJ R-.k~atr,atr];
Rvar[2,atr+attributes ,atr+attributes] Rk[atr,atr);
end; {f or atr}

RvarC3,1,1] R..k[1,1J;
Rvar[3,2,2) R-k[2,2);
for i :=3 to 5 do

begin
Rvar[3,i,i) : R-k[3,3];
Rvar[3,i+3,i+3) : R-.k[4,4J;
end; {for i}

case filename ES) of (Determine number -!targets}
VIv max-.target 5;
IX,'l max-target 10;
ITII max-.target 20;
IL,11 max-.target 50;
ICIIcl max..target :=100;

end; (case)
case filename EC) of {Deternine time span}

IAIIa' begin
min- time 50.0;
max~time 200.0;
end; (Case Al

-. 4.. 
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1B1,1b1 :begin
min-time .00.0;

max-time 200.0;
end; {Case B1

ICIIcl :begin
min-time : 0.0;
max-time := 300.0;
end; {Case C}

ID1,1d' begin
min-time 0.0;
max-time := 100.0;

end; {Case D}
'Ellel :begin

min-time 0.0;
max-time 2500.0;
end; {Case E}

'F',Ifl :begin

min-time 0.0;
max-time 360.0;
end; {Case F}

end; {case}
case filename[7) of iDetermine missing data rate}

'S',n' :missing-limit : 0.00;
lYlyl :missing-limit 0.05;
1X1,x1 :missing-limit := 0.10;
IZI,'zl missinglimit 0.20;
end; {case}

fInitialize input data file}
Connect(tmdata,'TMDATA ');

Reset(tmdata);
{Initialize sensor input data file}

Connect(ssdata,'SSDATA ');
Reset(ssdata);

{Initialize target input data file}
Connect(tsdata,'TSDATA ');
Reset(tsdata);

{Initialize cluster progress output file}
Connect(tcldata,'TCLDATA ');
Rewrite(tcldata);
Writeln(tcldata,'Clusters for attributes: ',

'Range, Range Rate, Azimuth, and Elevation');

Writeln(tcldata);
(Initialize true observation output file}
Connect(trudata,'TRUDATA ');

Rewrite(trudata);
Writeln(trudata,'Clusters for attributes: ',

'Range, Range Rate, Azimuth, and Elevation (True)');

%S
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(Initialize cluster state output f ile}

Connect~csdata,'CSDATA ');
Rewrite Ccsdata);
end; (Procedure Init-Program}

{*** State Derivative Functions/Procedures*****************}

Procedure Deriv~tm real;
FX :stacked-.vector;

var DX stacked-.vector);
type

matrix = array [l. .block,l. .block] of real;
var
ij,split integer;
r,ri,r2i,r3i,mf ,xr,yr,zr,x3x,x3y,x3z,y3y,y3z,z3z :real;
I yr :matrix;

begin
(General I actors}
r Sqrt(SqrCFX[1))+SqrCFXE2])+Sqr(FX[3)));
ri l/r; r2i :=Sqr~ri); mf : -mu*r2i/r;

{State transition I actors}
xr FXl*ri; yr :2FX[2]*ri; zr FX[3)*ri;
x3x -3*Sqr~xr); y3y -3*Sqr(yr); z3z :-3*Sqr(zr);
x3y :-3*xr*yr; x3z -3*xr*zr; y3z -3*yr*zr;
fvr[l,l) : mf*Ci : x3x);
fvr[1,2) : mf*x3y;

fvr[1,3) mf*x3z;
fvrE2.1) mf*x3y;
fvr[2,2) : mf*(i + y3y);

fvrE2,3) mf*y3z;
fvr[3,1) mf*x3z;

fvr[3,2) : mf*y3z;
fvr[3,3) mf*(l + z3z);

{State derivatives}
for i := 1 to 3 do
begin
DX~i) : FX~i+3); (Position derivatives)
DX~i+3) : mf*FX~i); (Velocity derivatives)
end; ffor i}

{State transition derivatives)
split block*nest;
for i I to split do

DX~nest+i] := FX~nest+split+i];
for i :=1 to block do
for j := 1 to nest do

DX~split+i*nest+j) := fvr~i,1]*FXE nest+j)
+ I yr [i .2)*FX E2*nest+j]
+ fvr~i,3*FX[3*nest+j];

end; (Procedure Deriv}
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{*** Integration Functions/Procedures *******************e*************}

Procedure InitializeRK78;
begin
rkf[1] 2/27; rkf[2] 1/9; rkf[3] 1/36;
rkf[4] 1/12; rkf[5] 1/6; rkf[6] 1/24;
rkf[7] 1/8; rkf[8] := 5/12; rkf[9 : -25/16;
rkf[10 1/2; rkf[11 := 1/20; rkf[12] : 1/5;
rkf[13] 1/4; rkf[14 := 6/6; rkf[15] -25/108;
rkf[16] 125/108; rkf[17: 125/54; rkf[18: -65/27;
rkf[19) 1/6; rkf[20] 13/900; rkf[21: 31/300;
rkf[22: -2/9; rkf[23] 61/225; rkf[24] 2/3;
rkf[25: 67/90; rkf[26: -53/6; rkf[27] :=-I07/9;
rkf[28: 704/45; rkf[29: 1/3; rkf[30] -1/12;
rkf[31: 23/108; rkf[32: -19/60; rkf[33: -91/108;
rkf[34: 17/6; rkf[35] 311/54; rkf[36] :=-976/135;
rkf[37] : 45/164; rkf[38) : 18/41; rkf[39: 2133/4100;
rkf[40] 45/82; rkf[41] : 2383/4100; rkf[42) -341/164; i
rkf[43] :=-301/82; rkf[44: 4496/1025; rkf[45] 3/205;
rkf[46] -3/41; rkf[47: -6/41; rkf[48] : 33/164;
rkf[49] 12/41; rkf[50) :=-1777/4100; rkf[51] 2193/4100;
rkf[52: 51/82; rkf[53) := -341/164; rkf[54) :=-289/82;
rkf[55: 4496/1025; rkf[56): 9/280; rkf[57 = 41/840;
rkf[58: 9/35; rkfS9] := 34/105;
end; {Procedure InitializeRK78}

Procedure RK78(var x stacked-vector;
var t,dt : real;

tout: real;
relerr,abserr real;

neqn : integer;
var iflag : integer);

label 1,2,3;
const
bup = 2.821109907456E+12;
blo = 1.6815125390625E-11;

dtfix,dtfail : boolean;
i,nrej,nrejtnstp integer;
dtold,delt,tO,rer,scale,aerte,texmag,pct real; V
nfOff2,f3,f4,f5,f6,f7,18,f9,flO4fIIf12,xO : stacked-vector;

begin
nrejt 0;

nstp := 0;
if (abserr = 0) and (relerr = 0) then {Set flag if fixed step mode desired}
dtfix true

else
dtfix false;

dtold dt;

•I
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1:dtfail :=false;
nrej :=0;

{Reset step size if this will put t greater than tout}
dolt :=tout - t;
if Abs(dt) >= Abs(delt) then
dt :=dolt

else
if AbsC2*dt) >= Abs~delt) then
dt :=delt/2;

it Abs(dt) >= 2.84E-14*Abs(t) then
begin

{First Evaluation}
to =t
for i := 1 to neqn do

xo~i) =x~]
Deriv(t,x,fO);

{Second Evaluation)
2: t :=tO + rkf~iledt;

for i I to neqn do
x(i) rk-f~llefO~iledt + xO[i];

Deriv~t,x,fl);
{Tird Evaluation)

t :=tO + rkf[2)*dt;
for i I to neqn do

xii (rkft3)*fO~i] + rkt[4]*fl~i))*dt + xO[i);
Deriv~t,x,f2);

{Fourth Evaluat ion}
t StO + rkfE[5) *dt;
for i I to neqn do

x~il : rkfE6)*fO~i) + rkf[7)*f2[i))*dt + xOti);
Deriv~t,x~f3);

{Fifth Evaluation)
t := tO + rkf[8]*dt;
for i I to neqn do

x~i) : rkf(8)*fO~i] +rkf[93*(f2[i) - -f3[i]))*dt + x0[i);
Deriv~t,x,f4);

(Sixth Evaluation)
t := tO + rkf[1O]edt;
for i 1= to neqn do

x~il : rkf~lilefO~i] + rkf[i2]*f4Ei] + rkf[13]*f3[i])*dt + xO[i];
Deriv~t,x,fS);

fSeventh Evaluat ion)
t := tO + rkf[14]*dt; 14

for i := Ito neqn do
x~iJ := (rkf[15]*fO~i) + rkf[l6)*f3(i] + rkf[17)*fS~il

+ rkf [18)*f 4 [i])dt + xO Ei)
Deriv~t,x,f6);

{Eighth Evaluation)
t :=tO + rkf~l9]edt;
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for i I to neqa do
1(i) (rkf[20)*:f 6i) + rkf(21)*:fO~iJ + rkf(22)*f5(i)

+ rkf([23) *f4([i))*dt + zO [i;
Deriv~t ,x,f 7);

(Ninth Evaluation}
t := tO + rkf(24J*dt;

for i I to neqn do
x Ci) : rkf([25)*f 8([i) + 2* 0(Ci) + 3*f 7([i) + rkf([2612*1.3E .I

+ rkf(27)*ff5i)i + rk-f(28)*f4(i))*dt + xO~i);

Deriv~t .x,18);
(Tenth Evaluation}

t 2= tO + rkf(29J*dt;
for i I to ueqnL do

x~iJ (rkf([30)*f 8(i) + rkf([31)*f3(i) + rkf([32)*16(i) + rkf([33)*f 0(i)
+ rkf(34)*f 7(i) + rkf(35)*f 5(i) + rkf(36)*:f4(i))*dt + rO~i);

Deriv~t,x,f9);
(Eleventh Evaluation}

t :=tO + dt;
for i 1 to neqa do

z~il : rkf(37)*18(i) + rkf(38)*:f9(i) + rkf(39)*16(i) + rkf(40)*f 7(i)
+ rkl (4 1) * 0 (i) + rkf £42) * 3([i) + rkf (43) *15([i)
+ rkf(44)*14(i))*dt + xO[i);

Deriv(t ,x,f 10);
(Twelfth Evaluation}

t := to;
for i I to neqn do

x~i) 2 rkf(45)*(fO~i) - 16(i)) + rkf(46)*Cf7(i) - 18(i)
+ rkf(47)*CfS~i) - f9(i)))*dt + zO~i);

Deriv~t,x,f 11);
(Thirteenth Evaluat ion}

t := tO + dt;
for i :1 to neqn do

x~i) 2 rkf([48)*f8(i) + rkf([49)*f9(iJ + rkl(560)*fO~i) + rkf(561*16(i)
+ rkf(52)*:f 7i) + f I1I(i) + rkf([53) *f3([i) + rkf([54) *f 5([i)
+ rkf(55)*f4(i))*dt + xO~i);

Deriv(t ,x,f 12);
(Compute state at t+dt}

for i :I to neqn do
x(i) (rkf(56)*Cf8(i) + 19(i)) + rkf(57)*Cf11(i) + M12i)

+ rkf(58)*(f6(i) + 17(i)) + rkf(59)*fS~i))*dt + xO~i);
if not dtf ix then

begin (Compute max local truncation error}
rer := R~ax(relerr,2.572E-13);
scale := 2/rer;
ae :scale * abserr + 1.OE-14;
rte :0;

for i := 1 to neqn do
begin
teo: Abs~rkf(57)*CfO~i) + 110(i) - 111i) MUD2i));

%i
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xmag Abs(x[i)) + Abs(xO[i)) + ae;
rte RMax(rte,te/xmag);

end; (for i}
rte := rte * scale;
if rte >= I then
begin {Reject this step}
dtfail true;
nrej nrej + 1;
nrejt nrejt + I;
if nrej >= 10 then
begin
for i I to neqn do -

x[i: xOMi);
t := tO;
iflag := 7;
Goto 3;
end {if}

else
begin
pct := 0.025;
if rte < bup then
pct := 0.9/Sqrt(Sqrt(Sqrt(rte)));

dt := pct * dt;

dtold :=dt;
Goto 2;
end; {else}

end; {if}
end; {if not dtfix}

{This step is acceptable - eighth order evaluation}

t := tO + dt;
nstp := nstp + 1;
if Abs(tout-t) <= I.OE-14 then
begin

dt := dtold;
iflag := 2;
Goto 3;
end;

if dtfix then

Goto 1;
pct := 20;

if rte > blo then
pct := 0.9/Sqrt(Sqrt(Sqrt(rte)));

if dtfail then
pct := Rxin(pct,1.0);

dt := dt * pct;
dtold := dt;
Goto 1;
end; {il}

Id N ' " I l k



88

{Check for too small a step size}-
if Abs(delt) <= Abs(dt) then

begin {Extrapolatc}

Deriv(t,x.fO);
for i 1 to neqn do

x~i] :fO~i)*dt + x[i];
t t + dt;

dt dtold;
iflag := 2;

end
else {Attempted to use too small a step size}

iflag := 8;
3:end; {Procedure RK78}

{**s Integrator Interface Procedures ****************************************}

Procedure StackVector(x_vector statevector;
Phi-matrix P-matrix;

va integ vat x-stack stackedvector);

va'.
i~j :integer;

begin
for i I to nest do

x-stack[i] := xvector[i];
for i := 1 to nest do

for j := I to nest do

x.stack[nest*i+j] := Phi-matrix[i,j];
end; {Procedure StackVector}

Procedure UnstackVector(var xvector state-vector;
var Phi-matrix Pmatrix;

x-stack stacked-vector);
vat

i,j integer;
begin
for i I to nest do

x-vector[i] := x-stack(i];
for i := 1 to nest do

for j := I to nest do .
Phi.matrix~i,j] := x-stack[nest*i+j];

end; {Procedure UnstackVector}

Procedure Get-Sensor;

var
time,result integer;

step real;
t array [1..2] of real;

SSV stacked-vector; 0
Phi P-matrix; ,

,a
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begin
for time :=framel to -1 do

Sis~time) : Sxs[time+1);
repeat
Read(ssdata,current-sensor);

until (current-.sensor.time = frame.tiue[0])
and (current..sensor.number = sensor);
Sxs[0J : current-.sensor.values;
Phi :=Identity;
Stack..VectorCSxs [0),Phi,SSV);
t[11 : 0.0; t[2) : tbias; step :=tbias;
RK78CSSV,t[l step,t[2) ,small,zero,nstack,result);
Unstack-.Vector(Sxs [0),PhiSSV);
end; (Procedure Get-.Sensor)

Procedure Get-.Observations;
va~r
time,ntime,obs,atr integer;
noise real;

begin
(Shift previous data}

for time framel to 0 do
begin
ntime time + 1;
atr-.limits[timeJ : atr-.limits~ntimeJ;
assigned~time) : assignedEntime);
end; (f or time}

for time framel to -1 do
begin
ntime time + 1;
nr-.obs[time) : nr-.obs[ntime];
nr..unassigned[time) : nr-.unassigned[ntime);
nr-.clusters [time) := nr-.clusters Entime);
nr-active[time) := ur-active[ntime);
nr-.inactive[timel : nr-.inactive~ntime);
attr~time) := attr[ntime);
status [time) status Entime);
targets[time) : targets~ntime);
observation [time) observation Entime);
frazae-.time[timel frame-time[ntime);
end; (f or time}

(Read new observations)
obs :=1;
attr[0,obs] : next;
targets[0,obs) next-.target;
frame..time[0) attr[0,obs,0);
repeat

EOI :=EOF~tmdata);
Echo_.TrueData~targets[0,obs] ,sen...nr,attr[O,obs,0j ,missing-flag);
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if not Missing~targetsEO,obs) 1sen-.nr,attrEO,obs,O) ,missingjflag) then
begin
for atr :=Ito attributes do
begin
atr-.limitsEO,1,atrj :=R~in(atrjlimits(O,1,atrJ ,attr(O,obs~atrj);
atr-.limitsEO,2,atr) RMax~atrjlimitsEO,2,atrj ,attr[O,obs,atr));
end; {f or atr}

Increment(obs);
end; {if not Missing}

if not EDI then
begin
Read~tmdata, currentsobs);
targets [0,obs) := currentsobs .target;
sen-..r :=current..obs. sensor;
attrEO,obs,OJ : current-.obs.time;
for atr := 1 to attributes do

attr[0,obs ,atr) := current-.obs .obs [atri
+ (bias EatrJ + current-obs .error EatrJ )*R~atrJ;

miss ing-flag : = currentsobs .missing;
end; {if not EOI}

until (attr[O,obs,0J > frame.time[O)) or EOI;
last-target :=0;
EDI := EOI or (attr[0,obs,0) > max-.time);
Writela~trudata);
if not EDI then
begi.n
Write~trudata,attr[O,obs.0) :7:1);
next := attr[0,obsj;
next-target := targets[O,obs);w
end; {if not EOI}

nrsobs(O) := obs -1;

nr..unassigned[0) nr-.obs [0);
nr-.inactive[0) := nr-.inactive[-1);
nr-.active[0) := nr-.activeE-i);
nr-clusters [0) : = nractive [0) + nr-.inactive [0);
end; {Procedure Get-.Observations}

Procedure Initialize-Clustering; t
var

missed :boolean;
time,ntime~cluster,obs,atr :integer;

noise,ltime :real;
begin

{Initialize attribute minimums, mauimumal
for atr := ito attributes do

begin
atr-limits[1,i,atr) big;
atr-.limits[l,2,atr) : -big;
end; {f or atr)
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f or obs 1 to clusters do
assigned[i~obsJ := false;

for time :0 dounto franel do
begin
ntime time + 1;
atr-.liaits~tioej : atr-.liits[ntime);
assigned~time) : assignedEntime);
end; {f or time}

{Initialize cluster status)
for time :z franel to 0 do
begin
nr-.clusters~timel := 0;
nr-.unassigned~time) := 0;
nr-obsftime) := 0;
nr-.active~time) := 0;
nr-.inactive[time) := 0;
targetsftime,0J : 0; P* For missing observations *
fraine-.time[time] : -1.0; {*For output buffering *
for cluster := 1 to clusters do
begin
observation~tiae,clusterj 0;
status~time,cluster) := 0;

end; {f or cluster}
end; {f or time}

{Fiud first measurement)
ltime := -1.0;
last-.target := 0;h

repeat
Read~tmdata, current-.obs);
next-target := current-.obs.target;
sen-nr :=currentobs.sensor;
next [0) current-.obs.time;
for atr :=I to attributes do

next Eatrj := current ..obs .obs Eatri
+ (bias Eatr) + current-obs .error Eatri )*R~atrJ;

miss ing-flag : = current-obs .missing;

if next [0) > ltime then f* Output true data *}
begin
itime := nto);
Writeln~trudata);
Write(trudata~ltime:7: 1);
end; {if}

missed := Niasingnext.target ,sen..nr,next [0),missingjflag);
if missed then

Echo-.Tnue-fata~next-target~sen-nr,ltime~missing-flag);
until not missed;
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for time I to 2 do
begin {Get minimum data frames minus I to start cluster}
Get-Observations; {Read remainder of observation frame}

Get-Sensor; {Read sensor state}

end; {for time}

repeat {Read beginning of true target state data frame}

Read(tsdata,current-target);

until (currenttarget.time = frametime[O);
end; {Procedure InitializeClustering}

{*** Major Procedures ************************************************}

Procedure Input-Data;

var
time,obsatr : integer;

begin
StartTimer( 1); {Timing}
Get-Obs ervat ions;

Get-Sensor;
{Calculate span minimums and maximums and scale factors}

span-limits := atr-limits[framelj;
for atr := 1 to attributes do

for time := frame1+1 to 0 do
begin

spanlimitst[,atr] RMin(span.limits[l,atr],atr-limits[time,l,atrj);
span-limits [2,atr] RMax(span-limits [2,atr],atr-limits [time,2,atr]);
end; {for time}

StopTimer(1); (Timing}

end; {Procedure Input-Data}

{*** Estimation Initialization Procedures **********************************}

Procedure Initialize-Estimation;

i,j : integer;

begin

{Identity matrix}

for i := 1 to nest do
begin

for j := I to nest do

Identity[i,j] := 0.0;
Identity[i,i] := 1.0;
end; {for i}

{State covariance}
Q_k := Identity;

for i := I to nest do

I_k'i,i := 1.0;
step := 10.0;
end; {Procedure InitializeEstimation}

V

0 -------
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{**Estimation Propagation Procedures*****************e*}

Function ArcTan2Cnum,den :real) real;
var

answer :real;
begin
answer :=ArcTau~num/den);
if den < 0 then

answer :=answer + pi;
if answer > pi then
answer answer - 2.0*pi;

ArcTan2 answer;
end; (Function ArcTan2}

Procedure Map-.StateCXr state.vector;NI
var Ov obs-.vector);

begin S

Ov[1) Sqrt(Sqr(Xr[1])+SqrCXr[2J)+Sqr~xr[3]));
Dv[2] CXrE1)eXr[4] + Xr[2)*Xr[S] + Xr[3)*Xr[6])/Ov[1);
Ov[3) ArcTan2(Xr[2LXr[1J);%
Ov[4] ArcTanCXr[3/SqrtCSqrCXr~l)+SqrCXr[2])));
end; (Procedure Map...State} =

Procedure Calculate-H~var H H-.matrix;
Xr b.ate-.vector;

var Ov obs-.vector); I

var
i integer;

rhoi ,rhoi2,varrho,varrhoi ,varrhoi2,rhoi2-.vari real;
begin

{Calculate coefficients}
Map..State(XrDv);
rhoi h/Ov[l);
rhoi2 Sqr~rhoi);
varrho SqrtCSqrCXr~l]) + SqrCXr[2J));
varrhoi l/varrho;
varrhoi2 Sqr~varrhoi);
rhoi2-sari :=rhoi2*varrhoi;

{Foru H matrix)
for i :=I to block do 

-'

begin PJr

HEl,i] :=Xr~i)*rhoi;
H[I~i+block] :=0.0;
HE2,i) : (Xr~i+block)*Ov~l) Xr~i]*Ov[2])*rhoi2;
Hf2,i+blockj H~l,i];
H[3.i+block] 0.0;
HC4,i+block] 0.0;
end; {for i}

H[3,11 -Xr[2]evarrhoi2;
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H[3,21 Xr~l)*varrhoi2;
H[3,3) 0.0;
HE4,1) -Xr~i]*Xr3*rhoi2_.vari;
H(4,21 -Xr[2].Xr(3]*rhoi2.yari;

H[4,3] varrho*rhoi2; ~pf
end; (Procedure CalculateH}

Procedure Map-.State-to-.Attribute-.Space (Xv state-.vector;
Pm P-matrix;

var Ov,OP obs-vector),
var

i,j,k integer;
Xr,SP state-vector;0
H.HP H-matrix;
m R-matrix; %

begin
for j I to nest do

Xr[j) : Xv~j) - Sxs[0,j]; 'f

Calculate..1CH,Xr,Ov);

for i :=1 to attributes do
for j :=Ito nest do
begin . 5

H..P~i,j] : 0.0;
for k :=1 to nest do

H-P~i,j) : H.P~i,j) + H~i,k]*Pm[k,j];
end; {for j}

M := Rk;
for i :=Ito attributes do

for j 1= to attributes do

for k :=Ito nest do
M~i,j] :=M(i,j) + H..P~i~k]*H~j~k];

for i 1= to attributes do
OPUi : 3.0*Sqrt(M~i.i]);

end; (Procedure Map-.State..to.Attribute}

Function ArcSin~arg :real) :real;
begin

ArcSin :=ArcTan~arg/Sqrt(i.0-Sqr(arg)));
end; (Function ArcSin}

Function ArcCos(arg :real) real;
begin

ArcCos :=pi/2.0 - ArcTan(arg/Sqrt(i.0-Sqr(arg));
end; {Function ArcCos}

Procedure Forecast;
var

cluster~i,j~k,result integer;
t .array [1. .2] of real;

%9
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SSV .stacked-.vector;

PhiPhiP .P...atrix;

begin P

Start..Timer(2); {Timing}
for cluster :=I to nr..clusters[-i) do

if status[O,clusterJ < 0 then
begin (Integrate state and state transition matrix)
Phi :=Identity;
Stack-.VectorCSx[cluster) ,Phi,SSV);

t[13 0.0;
t[21 frame-time[0) - frame-.time[status[,clusterl];
status[0,cluster) : -1;
RK78CSSV,t[iJ,step,t[2),siall,zero,nstack,result);
UnstackVector(Sx [cluster) ,Phi ,SSV);

(Propagate state covariance matrix)
for i :=1to nest doN

for j :=Ito nest do
begin
Phi-.P[i,j) : 0.0;
for k :=I to nest do

Phi..Y~i,j] : Phi-.P[i,j) + Phi~i~k]*P[cluster,k,j];
end; (for j)

P'Lcluster) : Q-.k;
for i :=1 to nest do

for j 1= to nest do
for k :=1 to nest do

P[cluster,i,j) : P[cluster,i,j) + Phi-.P[i,k*Phi[j,k);
Map-.State-.to-Attribute.Space (Sr [cluster) ,P [cluster),

eat [cluster) ,gate [cluster));
end; {if}

Stop-.TimerC2); {Timng}
end; (Procedure Forecast}

Procedure Calculate-Metrics;
label 1;
var

cluster,obs .atr,mrov~missed.gates integer;
delta real;
factor obs-.vector;
nr-feasible array [1. .2) of ivector;

begin
Start-.Timer(3); {Timing}
mrow : 0;

{Calculate standardization factors)
for atr 1= to attributes do

begine
factor~atr) : span-.limits[2,atr) spanjlimits~i~atr);
if Abs~factor[atr)) < zero then

factor[atr) : 1.0 J,

114

% %.
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else
factor~atr] :=1.0/factor[atr);

end; ffor atr}
(Initialize pre-assignment indices}

for cluster 1= to clusters do
ur-teasible[1,clusterl : 0;

nr-.feasible[2) : nr-.feasible[1);
col..basis itr-.feasible[1);
row-.basis nr-.feasible [1];

(Calculate metrical
for cluster := to nr-.clusters[-1) do

if status[0,cluster] -1 then
begin
Increment~mrov);
convert~zarov] : cluster;
for obs 1= to nr-obs[O) do
begin
metric[mrow,obsj : 0.0;
missed-.gates :=0;
for atr 1 to attributes do
begin
delta Abs~est[cluster,atr) - attr[O,obs,atr]);
if delta > gate~cluster,atr) then
if (delta > 2.0*gate[cluster~atr])
or (missed-gates >= max-.missed) then
begin
metric[mrov,obs] :=bad;
goto 1;
end {if missed)

else
Increment (missed-gates);

metric~mrow,obal : metricrmrov,obs] + Sqr(factor[atr]*delta);
end; (f or atr}

1: if metric~mrow,oba] < bad then
begin
Increment Cnr.f easible [1,mrow]);
Increment(r-feasible[2,obs));
col-.basis[arov) obs;
row-.basis[oba) mrow;
end; (if)

end; (f or obs}
end; (if status)

(Check pre-ass ignment}
for cluster 1= to mrow do

if Cr.feasible[1,clusterl > 1) or
(nr-.feasible[2,col-.basis [cluster)) > 1) then

colbasisclusterj : 0;
for obs :=I to nr-.obs [0) do

if (nr..feasible[2,obs] 1) or

te J..~.~y- ~ -
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(nr_feasible2,rowbasis[obs)) > 1) then S

row.basislobs] :0; 0
{Assign dummy values, as necessary}

for cluster := nrsclusters[-1+1 to nr-obs[O)+nr-inactive[-1) do
begin
Increment(mrow);
convert [row] := cluster;
status[O,cluster] :0 0; Dummy cluster}
for obs 1 to nrobs[O) do
metric[nrow,obs] := bad; .3'

end; {(for cluster}
for obs := nrobs[O)+1 to nractive[-1] do
begin
targets [Oobs := -1; (Dummy-observation}
for cluster := I to mrow do

metric[cluster,obs] := bad;
end; (for obs}

StopTimer(3); {Timing}
end; (Procedure CalculateMetrics}

{*** State Update Procedures ************************************ d***********}

Procedure Invert(M Rmatrix;

var MInv :Rmatrix);
label 1;
var
i,j,k,lirowicol,ll : integer;
determ,pivothold,sum,t,ab,big : real;

index : array[l..nest,1..3) of integer;
Procedure Swap(var a,b : real);

var
hold real;

begin

hold a;
a b;
b hold; &

end; fProcedure Swap}

(Gauss-Jordan inversion}
begin
for i : I to attributes do

index[i,3 := 0;
deters 1;
for i 1 to attributes do
begin (Search for largest element)

big := 0;
for j := I to attributes do

begin
if index[j,3) <> 1 then t

begin

PLi
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for k I to attributes do
begin I

if index~k,3J > I then
begin
writeln('ERROR: Matrix singular');
goto 1;
end;

if index~k,3J < 1 then
if AbsCMjK))D > big then
begin
irow j
icol k
big AbsCM~j,k));
end; (if)

end; ffor k}
end; {if}

end; (for j}
Increment(index Eicol,3J);
index~i,i) irow;
index~i,2) icol;

(Interchange rows to put pivot on diagonal}
if irow <> icol then
begin
deter. : -deter.;
for 1 :=1 to attributes do

SwapCR[irow,,) ,M~icol,1);
end; {if irow <> icol}

(Divide pivot row by pivot colun)
pivot K~icol~icolJ;
deter. deter. * pivot;
N~icol,icolj : 1;
for 1:= i to attributes do

K~icol,l] := Kicol,1) / pivot;
(Reduce nonpivot rows}

for 11 1= to attributes do
begin
if 11 <> icol then r
begin

t := [1iicol);
KEli,icoI1 : 0;
for 1 :=Ito attributes do i

K[1i1)1 :=[K11,11 - K[icolj] t;

end; (if 11 <> icol}

end; {for Ill
end; (f or i}

(Interchange columns)}
for i 1= to attributes do

begin
1 :=attributes-i + 1;
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it index~l,1) <> index[l,2J then
begin
irow index[1,11;
icol index[1,2J;
for k I to attributes do

swap(M~k,irovJ ,M~k,icol]);
end; (if index)

end; (f or i}
for k :=1 to attributes do

if indexNk,3) <> 1 then

begin
writeln('ERROR: Matrix singular');
goto 1;
end;

for i 1 to attributes do

for := 1 to attributes do

MInvli,j) : MU~JI;
1:end; (Procedure Invert}

Procedure CholeskyCH P...matrix;

var S P..matrix);
var

i,j,k integer;
sum real;

begin
for i 1 to nest do

begin

for j 1= to i-I do
S~j,i) : 0.0;

sum :=0.0;
for k 1 to i-I do

sum sum + SqrCS[i,k));
S~i,i) Sqrt(M~i~iJ - sum);
for j i+1 to nest do
begin
sum :=0.0;

for k 1 to i-I do
sum sum + S~i~k]*S~j,k];

S~j,i) CM~i,jJ - sum)/S[i,i);
end; (f or i}

end; (f or i}
end; (Procedure Cholesky}

Procedure Update_.Estimates;
var

cluster,i,j,k,obs integer;
Oref,od, obs..yector;
dS,dSx state-vector;
H H-.matrix;
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K-k,Fbar,FM K.matrix;
M,MI R-matrix;

Wbar, Ihat,IFMF, Lambda,Phat Pmatrix;
begin
StartTimer(6); {Timing}
for cluster := 1 to nr-clusters[O] do

if (status[O,cluster] = -1) and
(nrmissing[cluster] = 0) then

begin
(Calculate relative state vector}

for i := I to nest do
dS[iJ := Sx[cluster,i] - Sxs[O,i;

{Calculate H} 
CalculateH(H,dS,Oref);

{Calculate V bar}
Cholesky(P[cluster] ,Wbar);

{Calculate F bar}
for i := I to nest do

for j := I to attributes do

begin
Fbar[i,j] := 0.0;
for k := i to nest do {Lower triangular multiplication}

Fbar[i,j] := Fbar[i,j] + Wbar[k,i]*H[j,k];
end; {for j}

{Calculate X matrix}

MI := R_k;
for i := I to attributes do

for j := I to attributes do

for k := I to nest do
MIi,j] := NI[i,j] + Fbar[k,i]*Fbar[kj];

Invert (MI ,M);

{Calculate Lambda matrix}
for i := 1 to nest do

for j := 1 to attributes do

begin

FM[i,j] := 0.0;
for k := 1 to attributes do
FM[i,j] := F-[i,j] + Fbar[i,k]*N[k,j];

end; {for j}

I..FMF Identity;
for i := 1 to nest do

for j := 1 to nest do
for k := I to attributes do
IFMF[ij] := IFMF[i,j] - FM[i,k]*Fbar[jk];

Cholesky(I_FMF,Lambda);
{Calculate W hat}

for i := 1 to nest do
begin
for j 1 to i do

!9~ ~ %VV~ V~'\ "
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begin
What[i,j] := 0.0;
for k := I to i do

What[i,j] := What[i,j] + Wbar[i,k]*Lambda[k,j];
end; {for j}

for j := i+1 to nest do
What[i,j] := 0.0;

end; {for i}
{Calculate P hat}

for i := 1 to nest do
for j := I to i do

begin
Phat[i,j] := 0.0;
for k := 1 to i do

Phat[i,j] := Phat[i,j] + What[i,k]*What[j,k];
PhatEj,i] := Phat[i,j];
end; {for j}

{Calculate K matrix}
for i := 1 to nest do

for j := 1 to attributes do
begin
K-k[ij] := 0.0;
for k := I to i do

K-k[i,j] := K-k[i,j] + Wbar[i,k]*F-_[k,j];
end; {for j}

obs := observation[Ocluster;
for i := 1 to attributes do

od[i] := attr[O,obs,i] - Oref[i];
for i := 1 to nest do
begin
dSx[i] 0.0;

for j 1 to attributes do
dSx[i) := dSx[i] + K-k[i,j*od[j];

Sx[cluster,i] := Sxiclusteri] + dSx[i]; {Rectify reference state}

end; {for i}
P[cluster] := Phat;
end; {if}

StopTimer(6); {Timing}
end; {Procedure UpdateEstimates}

Procedure Assignment(n integer; (Hungarian Method}
cost :M_matrix;

var ans ivector);
label 1,2;

type
rvector = array [..clusters] of real;
bvector = array [1 .clusters] of boolean;

imatrix = array El..clusters,1. .clusters] of integer;

11. P . '6 'So' "0
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var
i~j~k~minteger;

delta real;
alpha,beta,slack rvector;
labels,exposed,nhbor,Q ivector;
labeled bvector;
mate array [1. .2) of ivector;
A imatrix;

Procedure Augment(v :integer);
begin
if labelsEvJ 0 then
begin
mate[1,vJ : exposed~v);
mate[2,exposed~v)) v
end {if}

else
begin
exposed~labels~v)] mate(1,v);
mate(1,v) : exposed~v];
mate[2,exposed~v)J:=v
augment(labels Ew));
end; {else}

end; {Procedure Augment}
Function Modify :boolean;
label 1;
var

i~j integer;
thetal,theta2 real;

begin
thetal big;
for j 1 to n do
if alack~j) > 0 then
thetal :=R~in~thetal,slack~j]);

thets.2 thetal/2;
for i I= to n do
if labeled[i) then
alpha~iJ alpha~iJ + theta2

else
alpha~i) alpha~i] - theta2;

for j 1= to n do
if slack(j) = 0 then
beta~j) beta~j] - theta2

else
beta~j) : beta~j) + theta.2;

for j 1= to n do
if slack[jl > 0 then
begin
slack~jJ : slack~j) - thetal;
if slack~j] =0 then
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if mate[2,j] = 0 then
begin
exposed[nhbor[j]] := j;
augment (nhbor [j]);
Modify := true;
goto 1;
end {if}

else
begin
labels[mate[2,j]] := nhbor[j];
labeled[mate[2,j]) := true;
Q[mate[2,j]] := 1;
AInhborjJmateC2,j)] := 1;
end; {else}

end; {if}
Modify := false;

1: end; {Function Modify}
Function Q.not-empty(var index : integer) boolean;

begin
index := 0;
repeat
Increment (index);
until (Q[index] = 1) or (index = n);
if (index = n) and (Q[index] 0) then

Qnot-empty := false
else
Q.not-empty true;

end; {Function Q-not-empty}

begin
for i := I to n do

begin
mate[i,i] 0;
alpha[i] 0;
labels[i] 0;
end; {for i}

for j := I to n do
begin
mate[2,j) := 0;
beta[j] := big;
for i := I to n do

beta[j] := RMin(beta[j],cost[i,j]);
end; {for j}

{Repeat for n stages}

for m := 1 to n do
begin
for i := 1 to n do

for j := I to n do
A[i,j] :- 0;

for i I to n do
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exposed[i] := 0;
for j := I to n do

slack[j] := big;
for i := 1 to n do

for j := 1 to n do
if cost[i,j] - alpha(i] - beta[j] < zero then

if mate[2,j] = 0 then
begin
exposed[i] j;
end {if}

else
begin
A~i~mateC2,jJJ : 1;
end; (else}

{Construct auxiliary graph}
for i := I to n do
begin
q[i] := 0;
labeled[i] := false;
end; {for i}

for i := 1 to n do
if mate[l,i] = 0 then
begin
if exposed[i] <> 0 then
begin
augmnent(i);

goto 2;
end; (if}

Q[i] : ;
labels[i] 0;
labeled[i] true;

for k := Ito n do
begin .

delta := cost[i,k - alpha[i] - beta[k]; ,6

if delta < zero then
delta := 0.0;

if (0 <= delta) and (delta < slack[k]) then O
begin 4"

slack[k] delta;
nhbor[k] i; .

end; {if} 
end; {for k}

end;{if}
1: while Qnot.empty(i) do

begin
qci) := 0;
if exposed[i] <> 0 then
begin

augment (i);

p 4 '~~ - .~ 4 4 '4"4 '4'.' ?
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goto 2;
end;

for k := I to n do
begin
delta := cost[i,k] - alpha~i] - beta[k];
if delta < zero then
delta := 0.0;

if (0 <= delta) and (delta < slack[k]) then
begin
slack[k] delta;
nhbor[k] :i;
end; {if}

end; {for k}
for j := I to n do

if (A[i,jJ = 1) and not labeled[j] then
begin

labels[j] :i;
labeled[j] true;
Q[j] := i;

if exposed[j] <> 0 then
begin
augment (j);
goto 2;
end; {if}

for k := 1 to n do
begin
delta := costEj,k] - alpha(j) - betaEk];

if delta < zero then
delta := 0.0;

if (0 <= delta) and (delta < slack[k]) then
begin

slack[k] : delta;
nhbor[k] j;
end; {if}

end; {for k}

end; {if}
end; {while}

if not Modify then
goto 1;

2: end; {for m}
ans := mate[2];
end; {Procedure Assignment}

Procedure PerformClusterAssignment;
var
clusterobskatr,size,

asize,col_index,row-index : integer;
brow,row-convert ivector;
done : boolean;

P
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begin
StartTimer (4); {Timing}
size := IMax(nractive[-1) ,nrobs[O]);

{Perform pre-assignment packing}
row-index := 0;
asize := 0;

for cluster := I to size do

if col-basis[cluster) = 0 then
begin
Increment(asize);
Increment (row.index);

row-convert [row-index] := cluster;
col-index := 0;
for obs := 1 to size do

if row-basis[obs] = 0 then
begin
Increment (col_index);
ametric[row-index,col-index: metric[cluster.obs];

end; {if}
end; {if}

if asize > 0 then
begin
Assignment (asize,ametric,brow);
colindex := 0;

for obs := I to size do (Unpack solution}
if row-basis[obs) = 0 then
begin
Increment(colindex);
row-basis[obs] := row-convert[brow[col-index));
end; {if}

end; {if}
brow := row-basis;

(Check for invalid assignments and assign targets to clusters}
for obs := 1 to size do

begin

cluster := convert[browobs));
if metric[brow[obs],obs] < bad then
begin (Good assignment}
observation[0,cluster] := obs;
assigned[O,obs] := true;
Decrement (nr._unassigned [O));

nr-missing[cluster] 0;
end {if}

else
if status[O,cluster] = -1 then
begin (Missing assignment}
(Cluster has been propagated maximum number of times}
if nr-missing[cluster) >= max-prop then

begin (Terminate old cluster}

"W N---
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status[0.clusterJ 0;

Increment inr-.inactive olj);
Decrement(ur-.activetO));
end (if)

else
begin (Propagate old cluster)
Increuent(nr~jissing[cluster));
observationtO,cluster] : 0;

end; {else}
end; {else}

end; (f or obs)

Stop..YimerC4); (Timing)
end; {Procedure Perforu..Cluater-.Assignment}

Procedure Calculate-.SP-Estimates(timei ,obsl integer;

var est~gate 0.matrix);

type
vector =array [l. .block] of real;

var
i,j~time2 integer;

A,acc,acc n,acc-.p,acc..t2,Arrs,
Arrs-.dot..urho ,Arrsv ,bi ,b2,
beta..1,beta-.2 ,beta..min~beta~max,
Co. ,zCosel,Cos..betaCos..beta1,
Cos..beta_.2,d,d,d2,d3,dmax,dmin,
u.factorl ,u.factor2 ,rl.Aot..rs2,
rng.min .rng..max *Sin..az ,Sin...el,.Sqr-.t2 1,

t21 ,theta,vmag2vsmag2v..dot-.urho.
rmag2,ruiag3 real;
rsmag2 array [1. .2) of real;

urho,rvec vector; I
begin

(Calculate unit range vector)
Cos-.az Coo(attr~timel~obsl,3)); V

Cos-.el Coo~attr[timel~obel,4]);
Sin..az Sin~attr~timel,obsl.3));
Sin..el Sin~attr~timel,obsl,4));

urho [1) Cos-.el*Cos.az;
urhoE2) Cos-el*Sin-az;

ijrho[3) Sin-.el;
(Compute magnitudes; dot products!

rmag2 0.0; rsmag2[1) 0.0;

vsmag2 0.0; vs~dot-jirho 0.0;
for i I to block do

begin
ji + block;

rvec~i) : attr~timel,obsul.1urho~i) + Sxs[timel,i];
rmag2 :=rmag2 + Sqr~rvec~i));
romag2[l) rsmag2[l) + Sqr(Sxs~timeI,i));
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vsmag2 vsmag2 + Sqr(Sxs~timel,j]);
va-.dot-.urho :=s...dot-.urho + Srs~timel,j]*urho~iJ;
end; {f or i}

vmag2 :=2.0*CKax-.Energy + mu/Sqrt(rmag2));
mu-.factorl -mu/(Sqrt(rmag2)*rmag2);
mu-factor2 =-mu/ CSqrt Crsmag2 [1] )*rsmag2 [1]);
acc-.p 0.0; acc-.t2 :=0.0;
for i I to block do
begin
acc mu-.factorl*rvec~i] - mu-jactor2*Sxs[timel,i];
acc-.t2 acc-.t2 + Sqr~acc); I
acc-p acc-p + acc*urho~i];
end; (f or i}

acc..n := Sqrt(acc-.t2 - Sqracc.p));
Cosbeta-.:= (attr~timel~obsl,2] + vs_dot_urho)/Sqrt~vmag2);
beta-.1 :=ArcCosCCos-.beta-1);
dI Sqrt~vmag2 -Sqr(attr[timel,obsl,2] + vs_dot_urho));
d2 :=Sqrt~vsmag2 -Sqr~vs-dot-urho));

for time2 :=time1+1 to 0 do
begin

{Calculate time interval}
t21 : fraine.time[time2) - frame-time[timel);
Sqr-.t21 : 0.5*Sqr~t2I);

{Compute magnitudes; dot products}
rsmag2[2) 0.0;
rl-dot-.rs2 0.0;
for i :=ito block do

begin
rsmag2[2) : rsmag2[2] + Sqr(Sxs[time2,iJ);
rl.dot..rs2 :=l...dot..rs2 + rvec[i]*Sxs[time2,i];
end; (for i}

A := 1.0 + mu-.factorl*Sqr-.t21;
(Calculate accelerations; more dot products)

Arrs 0.0; Arrs-dot..urho :=0.0;
for i I to block do

begin
Array A*rvec~i] - sxsrtime2,i];
Arrs Arre + SqrCArrav);
Arrs-.dot..irho :=Arrs..doturho + Arrsv*urholi];
end; (for i}

Arra : SqrtCArrs);
(Compute angle beta}

Cosbeta_2 Arrs..dot.urho/Arrs;
Cos-.beta R~in(Cos-beta I ,Cos~beta 2);
beta-2 :=ArcCosCCos-beta_2);
beta-max beta-.. + beta-2;
beta-umin Abs(beta.. - beta_.2);

(Calculate range estimate and gate)
bl Sqr(A)*rmag2 + Sqr(t2l)*vmag2 -2.0*A*rl-dot-rs2 + rsmag2l23;
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b2 2.O*t2l*Arrs*Sqrt~vmag2);
est~tise2,l) Sqrt~bl + b2*Cos~beta-l.);

gate~time2i)3 kbsCSqrt~bl + b2*Cos~beta-max)) at~tinie2,1]);

gatettime2,lJ R~axCAbsCSqrt(bl + b2*Cos(betaJuin)) - est~tiae2,i)),

gate~time2,1)) + 3.O*R~l];

(Calculate range rate estimate and gate}

d3 :=Sqr-.t2l*acc-n;
darx t2l*(di+d2) + d3;

dnuin t21*Abs(dl-d2) - d3;

d :=O.S*Cdmax + dmin);

est~time2,2) :=CSqr~est~time2,1)) - attr~timel,obsi,l]

*Sqrt(Sqr(est~time2,i)) - Sqr~d)))/Cest~time2,1)*t21);

rng-.min est~time2.1) - gate~time2,l);

rns-.max est~time2,i) + gate~time2,1);

gatettime2,2J Abs(CSqr~rng-.max) - attr~timel ,obsil ]*SqrtCSqr~rng-jnax)

- Sqr~dmax)))/rg-max~t21) - sttime2,2));

gate~time2,2J ftax(Abs((Sqr(rng-max) - attr~timel,obsi,1J

*Sqrt(Sqr~rng-.max) - Sqr~dmnin)))/(rng-max*t21)
- est~time2,21),gate~time2,2));

gate~time2,2) R~axCAbs(CSqr~rng-.min) - attr~timei,obs1,i)
*Sqrt(Sqr~rng-min) - Sqr~dmax)))/Crngjuin*t21)

- est~time2,2)),gate~time2,2J);

gate~time2,2] R~axCAbsCSqr~rng.li) - attr~timei,obs1,i)

*SqrtCSqr~rng-min) - Sqr~dmin) ))/Crng-.min*t2l)

- est(time2,2)),gate[time2,2J) + 3.O*R[2);

gate~time2,2) 1.3*gate[time2,2J;

(Calculate azimuth and elevation gates}

est Etime2,3) attr~timel,obsl,3);

est~time2,41 attr~timel,obsl,4);

theta :=ArcSin(dmax/est~time2,1J);

gatertime2,3) theta/Cos~attr[timei~obsl,
4)) + 3.O*RE3);

gate~time2,4) theta + 3.O*R[4];

end; ffor time2}

end; (Procedure Calculate-.SP-.Estimates}

Procedure Calculate-.DP-.Estimate~timel,obsl,
time2,obs2 integer;

var energy,delta-.energy real);

type
vector = array El. .block] of real;

var

cluster,i,j,k,time,atr integer;

t,obs array [1. .2) of integer;

Cos-z,Cos-e.Sin~az,Sin-.el,dti,r2,v2.rf real;

state,Emat,E-.P state-vector;

rmag2,rmag3,r-dot~urho array [l. .2) of real;

mu-factor array El. .2,1. .2) of real;

dt,tf array El. .3) of real;

urho~rvec array [l. .2) of vector;
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r..dot..part array [1. .2.3. .4) of real; r
partialturho array (1. .2.3. .4) of vector;
Juat, J_.R : 3..atrix;
Puat P-.matriz;

begin
t[i) : timel;
t[2J : time2;
obs~l] obsI;
obs(2J obs2;
dt(3) : frame-.tiue~time2) frane-.time[timei);
dti : .0/dt(3);
dt(2) 0.S*dt(3);
dt~l) : -dtE2);
tf El) dt~i)*dti;
tf(2) dt(2)*dti;
for time : ito 2 do a,

begin%
Cos-.az :Cos~attr~t (time) ,obs (time) ,3));%

Cos-e1 Cos~attr~t~time) ,obs~time) ,4));

Sin-az :2Sin~attr~t (time) ,obs~time) ,3));
Sin-.el Sin~attr~t~time) ,obs[time) ,4J);
urho~time,i) Cos-.el*Cos-.az;
urho~time,2) : Cos-.el*Sin-.az;
urho~time,3) Sin-el;
partial.urho~time,3, 1) -Cos-.el*Sin.az;
partial-.urho~time,3,2) : Cos-.el*Cos-.az;
partial-.urho~time,3,3) 0.0;
partiaV..urho (time .4,1) -Sin-.el*Cos..az;
partial.urho (time,4.2) -Sin.el*Sin-.az;
partial.urho~time,4,3) : Cos-e1;
rmag2(time) : 0.0;
r-dot-u.rho~time) := 0.0;
r..dot-.part[time,3) : 0.0;
r-.dot-.part~time,4) 0.0;
for i := 1 to block do

begin
rvec~time,i) : attr~t~time) ,oba~time) ,l*urho~time,i) + Sxs~tttime) 4);
rmag2Etime) : rnag2ttime) + Sqr~rvec~time~i));
r-.dot-.urho (time) := r..dot-.urho (tine) + rvec (time, ii*urho (tine. i);
for atr := 3 to 4 do

r.Aot.part (time ,atr) : = r~ot.part~time ,atr)
+ rvec~time,i)*partiah-urhotime,atr,iJ;

end; {f or i}
rmag3 (time) := Sqrt Crmag2 (tine))*rmag2 [time);
mu-.factor~time, 1): mu*dt El*dt E2)/C2.oermag3 (time));
mu-tactor~time,2) : 3.O*mufactor~time. 1)/rmag2Etime);%
mu..factor~time,l) 1.0 - muwfactor(time,1);
end; {f or time}

r2 :0.0; v2 :0.0;

]:fp



for i 1 to block do
begin
i : i + block;
atatefi] tfC2)*u.factor[i, 1]*rvec[Ii]

-tf[(1*u.factorE2,1J*rvecE2,i);

r2 :=r2 + Sqr~state~ifl;
state~j := dti*(au-factorE2, iJ*rvec[2,iJ

- u.factorEl, 1) *rvec l, i));
v2 :=v2 + Sqr~state~j));
Jmat~i,1J tfE2)*Cmu...factor[1,1J*urho~l,iJ

+ mu-.factor[i,2J*r-.dotrhofl]*rvec~l ,i]);
Jinat~i,2) 0.0;
Jiuat~i.5) -tf [1J*Cmu-jactor[2,1)eurhoE2,iI

+ mu-.factor[2,2)*r..dot~urho2)*rvecE2,iJ);
Jmat~i,6) 0.0;
Jmat Ej.1 i -dti*(mu.factor[l, l]*urho~l,i)

+ mu-.factor[1,2]*r-.doturho~l)*rvec[i,i]);
Jmat~j,2] 0.0;
Jmat~j ,S) dti*Cmu-.factor[2, 1)*urho[2,i]

+ mu-..actort2,2] *r-dot-urho [2] *rvec [2. i));
Jmat~j,S) 0.0;
for atr :=3 to 4 do
begin
Jmat~i,atr) : attr~timel ,obsi ,l]*tf [2)

* Cmu-.factorEl, 1) *partjal-urho El, atr, iI
+ mu-.factor[l,2)*r-.dot-.part~l.atr*rvec~l,i]);

Jmat Ei,atr+4) : -attr~time2,obs2, l]*tf El)
*(mu..factorE2, l)*partial.urhoE2 ,atr, i)
+ u.factorE2,2) *r dot-part [2 ,atr] *rvec E2, i));

Jznat~j,atr) : -attr~timel,obsl,l]*dti
*(mu-factorl [, 1l)*partjal..urho[I, atr, i]
+ mu-.factor[l ,2)*r-.dot-.part~l ,atr) *rvec~l ,i]);

Jmat~j ,atr+4J : attr[time2,obs2, lJ*dti
*Cmu-jactorE2, l)*partial-urhoE2,atr, i)
+ mu-.factorE2,2) *r-ot-.part E2,atr] *rvecE2, i]);

end; (f or atr}
end; (f or i}
energy :=v2/2.0 - mu/Sqrt~r2);
rf :=mu/Cr2*Sqrt~r2));
for i :=Ito block do

begin
j := + block;
Emat~i) state~i)*rf;
Emat~j] state~j];
end; for i}

for 1 1= to nest do
for j := to nterms do
begin
J..R~i,j] :=0.0;

xr, A.W
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for k :=Ito nterins do

J-.R~i,jJ : J...fi,jJ + Juat~i,k)*RvarE2,k,j);
end; (for j)

for i :=1 to nest do

for j 1= to nest do

begin
Pmat~i,jJ : 0.0;
for k 1= to nterms do

Pmat~i,j] :=Pmatti,jJ + J-.R~i,k*Jmat[j,kJ;
end; {for j}

for j :=I to nest do
begin
E-.P~jJ 0.0;
for k 1 to nest do

E..P~j] : E..PEj) + Emat~k]*Pmat~k,j);

end; (for j)
delta-.energy :=0.0;
for j :=I to nest do

delta-.energy :=delta-.energy + E-.P~j]*Enat~j);

end; (Procedure Calculate-.DP-.Estimate}

Procedure Calculate.TP..Estimate(timel,obsi,
time2,obs2,

time3,obs3 integer;

var state state..vector;
var Pnat P-m.atrix;

var energy,delta.energy real);

type
vector = array El. .block] of real;

var
cluster,i,j,k,time,atr integer;

t ,obs array [1. .3) of integer;
Cos-.az,Cos~el,Sin-.azSin-.el,r2,v2,rf real;

Emat,E-.P state-.vector;

ruaag2,rmag3,r-ot-.urho array (1. .3] of real;

r-ot-.part array [1. .3,3. .4] of real;

mu-.f actor array El. .3,1. .2) of real;

drho vector;

dt,tf array El. .3] of real;

urho,rvec array El. .3) of vector;

partial-.urho array El. .3,3. .4] of vector;

Jmat,J-.R .T...atrir;

begin
t[11 := timel; t[21 time2; tE3] : time3;

obs[l] obsi; obsE2) := obs2; obsE3) : obs3;
dt~l] :=frame-.time~time2J - frame-.time~timell;

dt E2) franie.time Etime3) - framej.ime Etime2);
dt[3J dt[l) + dtE2);
tf~l] -dtE2]/CdtilJ*dtE3));

~~~**~~~~~%,*~~f IN~ % , -- .~.r.y.,.a
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tf[2) (dt[2)-dt[1J)/Cdt[I1*dt[2J);
tf[3J dt(1)/Cdt[2)*dt[3J);

for time I to 3 do
begin
Co...az CosCattr[t[tiueJ ,obs[tim.J ,3J);

Cos-.el Cos(attr~t[time) ,obs[time) ,4));

Sin..el Sin(attr~t[time] ,obs[timeJ ,4J);

urho~time.11 Cos-.el*Cos-.az;
urho[time,2J Cos-.el*Sin.az;

urho[time,33 Sin-e.l;

paxtial.urho [time .3.*1) -Cos-.el*Sin-.az;
partial.urho [time ,3,2) Cos-.el*Cos-.az;

partial-urho[time.3,3] 0.0;

partial.ur-ho [time ,4.l) -Sin.el*Cos-.az;

partial ..urho [time ,4 .2) -Sin~el*Sin.az;
partial-.urho[time,4,3) Cos..el;
end; (f or time}

r2 0.0;
v2 0.0;
for i :=I to block do
begin
j : i + block;
statefi) : attr[time2,obs2,i)*urho[2,i] + Sxs [time2, i];

r2 :=r2 + Sqr(state[i));
drho[iJ : tf[1*urho[i,i) + tf[21*urho[2,iJ + tf[3)*urho[3,i);
state[jJ : attr[time2,obs2,2) *urho[2,i) + attr[time2,obs2, 1)*drholi]

+ Sxs[time2,jJ;
v2 :=v2 + Sqr~state[j));
Jmat~i,lJ urho[2,i);
Jmat[i,2) 0.0;
Jmat[i,3J 0.0;
imat[i,4) attr[time2,obs2,1*partial.urho[2,3,i);

.Jmatli.6) 0.0;
Jmat[i,6] 0.0;
.mat[i,7) attr[time2,obs2,)*partial-.urho[2,4,i);

Jmat[i,8) 0.0;
Jmat[jIJ drholiJ;

Jmat[j,2) : urho[2,i);
for atr :=3 to 4 do

begin
k :=3*Catr -2);

Jmat[j .k) attr[time2,obs2, I)*tf [1)*partial.urho[1,atr, i);

3mat[j ,k+l] (attr[time2,obs2,2) + attr[time2,obs2, 1etf [2)
*partial-.urho [2 ,atr, i);

Jmat[j ,k+2) attr[time2,obs2, 1)*tf [3) *partial-.urho[3,atr, i);

end; (f or atr}
end; (f or i}

energy :=v2/2.0 - mu/Sqrt~r2);



114

rf := au/(r2*Sqrt(r2));
for i := I to block do
begin
j :i + block;
Emat[i] state[i]*rf;
Emat[j] stateSjJ;
end; (for i}

{Form state covariance natrix}I"
for i := 1 to nest do

for j := 1 to nterms do
begin
J_[i,j1 := 0.0;
for k := 1 to nterms do
JR[i,j) := JR[i,j] + Jmat[i,k]*Rvar[3,k,j];

end; {for j}
for i := 1 to nest do

for j := I to nest do
begin
Pmat[i,j] := 0.0;
for k := 1 to nterms do

Pmat[ij] := Pmat[ij] + JR[i,k]*Jmat[j,k];
end; {for j}

for j : I to nest do
begin
E-P[j] : 0.0;
for k I to nest do

EP[j] := EP[j] + Emat[k]*Pat[k,j];
end; {for j}

delta-energy := 0.0;
for j := 1 to nest do

delta-energy := delta-energy + E.P[j]*Emat j]; I
end; {Procedure CalculateTPEstimate}

Procedure PerformCluster_Initiation;
label 1;
type

pairs = record

timel,obsI,time2,obs2 : integer;
end; {record}

triples = record
tinel,obsl,time2,obs2,time3,obs3 integer;

metric real;
end; {record}

var
move boolean; %
time,obs,atrntime,start,stop,
count,ocountl,ocount2,cluster,
missed-gatespointl,point2,arc integer; S

delta,specificenergy real;

urn
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active bvector;
estimates,gates O_matrix;

index,back_index,incident array [span] of ivector;
pointer array [framel..-i) of ivector;

pair array Eframel..-1,1..clusters] of pairs;

triple array [1..clusters] of triples;
Procedure Solve.QP(acs integer;

var best bvector);

var
i integer;
mincost real;

solution bvector;

Function Feasible : boolean;
label 1;
var

result boolean;

time,obs integer;
begin
result := true;
for time framel to 0 do

for obs 1 to nr.unassigned[time] do
if incident[time,obs] > 1 then

begin

result := false;
goto 1;
end; {if}

1: Feasible := result;
end; {Function Feasible}

Procedure Search(j integer;
c real);

var
k integer;

d real;
begin

for k := j+I to arcs do
begin
solutionEk] := false;

with triple[k] do
begin

Decrement(incident [timel ,backindex[timel,obsil);
Decrement(incident [time2,backindex[time2, obs2]]);
Decrement (incident [time3,back_index [time3,obs3J]);
d := c - metric;

end; {with}
if not Feasible then

Search(k,d)
else

if d < mincost then
begin
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best solution;
mincost := d;
end; {if}

solutionEk] := true;
with triple[k] do

begin

Increment(incident [timel ,back-index [timel ,obsl]]);

Increment ( incident Itime2, backindex Itime2,obs2]);
Increment (incident Etime3,backindex[time3,obs3]]);

end; {vith}

end; {for}

end; {Procedure Search}

begin

solution best;
mincost big;

if not Feasible then

Search(O,O);

end; {Procedure SolveQP}

begin

StartTimer(); {Timing}
for time := framel to 0 do {Index unassigned observations}

begin
obs:= 0;

f or count 1= to nr-.unassigned~time) do
begin

repeat

Increment(obs);

back-index[time,obs] := 0;

until not assigned[time.obs];

index[time,count] := obs;
backindex[time,obs] := count;

end; {for count}

end; {for time}

for start := framel to -1 do {Determine possible pairr"
begin

obs := 0;

for ocounti := 1 to nr.unassigned[start] do

begin

pointer[start,ocountl] := obs + 1;

CalculateSPEstimates(start, index[start,ocountl,
estimates,gates);

for stop := start+1 to 0 do
begin

for ocount2 := 1 to nr-unassigned[stop] do

begin

missed-gates := 0;

for atr := 1 to attributes do

begin

*,( ~ ~ ' ~i
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delta Abo(astimates~stop,atr]
- attr[stop,index[stop,ocount2) ,atr));

if delta > gates~stop,atr] then
if (delta > 2.O*gates~stop,atr])
or (missed-gates >= max-missed) then

goto I
else

Increment (miss ed-.gates);
end; (f or atr}

CalculateDP-.Estijat.(start,index [start ,ocountl),
stop,index [stop, ocount2),
specific-.energy ,delta);

if specific-.energy <= max-.energy + 3.O*Sqrt~delta) then
begin
Increment(obs);

with pair[start,obsJ do
begin
timel start;
obsi index[start,ocountl;
time2 stop;
obs2 index[stop~ocount2);
end; {with}

end; {if}
1: end; (f or ocount2}

end; (f or stop}
end; {f or ocountil

pointer[start,nr-unassigned[start+lI : obs + 1;
pointer[start.0O): obs;
end; (f or start)

(Form all possible triples and calculate metric; eliminate infeasible triples}
for time framel to 0 do

for obs 1 to ur-.unasigned[timel do
incident[tine,oboa): 0;

count :=0;
cluster :=r...clusters[0J;
for start :=franel to -2 do

begin%
for ocounti 1= to pointer[start,0) do
begin
stop :=pair[start,ocountl).time2;
if stop <> 0 then

begin
obs : back-.index[stop,pair[start,ocountlj .obs2);
pointl pointer~stop,obsJ;
point2 pointer[stop,obs+l);
for ocount2 :=pointi to point2-1 do
begin
Increment (cluster);
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Calculat.-TP-.Eatimate(start~pair (start ,ocountlJ obsi,
stop,pair~stop,ocount2) .obsi,
pair~stop.ocount2J .time2,
pair (stop,ocount2) .obs2,
Sx~cluater) ,P~cluster),
specific.energy,delta);

it specific-.energy <= max-.energy + 3.O*Sqrt~delta) then
begin
Increment (count);
nr-.missing~clusterJ : 0;
with triple~count] do

begin
timel start;
obei pair~startocountl.obsi;
time2 stop;
obs2 pair(stop,ocount2).obsi;
time3 pair[stop~ocount2).time2;
obs3 pair~stop,ocournt2).obs2;
metric specific-.energy;
Increment~incident~timel ,back-.index~timel ,obsl)]);
Increment~incident~time2 ,back-.index~time2 ,obs2fl);
Increment~incident~time3 .back..index Etime3 ,obs3l]);
active (count) := true;
end; {uith}

end; {if}
end; (f or ocount2}

end; {if}
end; ffor ocountil

end; ffor start} -

{Solve remaining quadratic program using implicit enumeration}
Solve..qP(count ,active);
cluster :=r...clusters [0);
move :=false;
for arc := I to count do
if active[arc) then

begin
Increment (cluster);
ar-missingcluster] : 0;
if move then

begin
Sx (cluster) Sr [nr..clusters [-1) +arc);
P [cluster) P[r...clusters [-1) +arc);
end; ( if move)

with triple~arc) do
begin
assigned~timal,obsi) : true; V

Decrement~nr-uinassigned~timel));.5
observation~timel,cutr := obsi;
assigned~time2,obs2) : true;
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Decrement(nr.unassir-ted [time2));b

observation [time2, cluster) : = obs2;
assigned[time3.obss) : true;

Decrement(nr.unassigned[time3));
observation Etime3. cluster) := obs3;
for time := timel to 0 do
begin
status[time,cluster) := time2 - 1;
Increment Cnrsclusters [time));
Increment(nr-.active[time));
if (time <> timel) and (time <> time2) and (time <> time3) then

observation[time,cluster) := 0;
end; ffor time}

end; {with}
end {if}

else
move :=true;

Stop..Timer(6); {Timing}

end; {Procedure Perform-Cluster-.Init tat ion}

{*** outputs********************************}

Procedure Echo..Cluster-.Assignient(time integer);

var
cluster,count :integer;

begin
if frame..time[time) >= 0.0 then

begin
write(tcldata,frame.sime~time) :7:1);
cluster := 0;
for count := 1 to nr..active [time) do a

repeatN
Increment(cluster);
if status~time,cluster) < 0 then%

Write(tcldata,targetsEtime,observation[time,cluster)) :4)
else

Write(tcldata,' ;'
until status~time,cluster) < 0;

Writeln(tcldata);
end; {if}

end; {Procedure Echo-luster.Assignment}

Procedure Output.Cluster..Residuals; %5
var

count~cluster~target,i,j :integer;
position~velocity :real;
Sxt :array Ci. .clusters) of state.vector; .



120

begin
(Input target states for current observation frame}
repeat

Sxt [current.target.number) := current.target .values;

Read(tadata, current.target);
until (currenttarget.time > frame.time[O);

(Compare estimated to true target states)
cluster := 0;
for count := 1 to nr.active[O] do

repeat
Increment (cluster);
if status[time,cluster] < 0 then

begin
target := targets [0,observation[o,cluster];
position 0.0;
velocity 0.0;

if target > 0 then
begin
for i := I to block do

begin
j := i + block;
position : position + Sqr(Sx[cluster,i] - Sxt[target,i));
velocity velocity + Sqr(Sx[cluster,j] - Sxt[target,j]);
end; {for i}

position := Sqrt(position);
velocity := Sqrt(velocity);
end; {if target > 0}

Write(csdata,cluster:4,target:4,frame-time[0 :7:1);
Writeln(csdata,position:11:1,velocity:7:1);
end; (if status < 01

until status[O,cluster] < 0;
end; (Procedure OutputClusterResiduals}

{*** Main Program ***********************************************************}

BEGIN

{** Perform Initializations **}
**** ** * ** * ********** ******

InitjTimes; {Timing}
StartTimer(O); (Timing}
InitProgram;
InitializeRK78;
Initialize-Estimation;

Initialize-Clustering;

'V - - 'U .V%.,,.w% C %..
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{*Perform sequential clustering*}

repeat
Input.Data;
Forecast;
Calculate..Metr ice;
Pert orm-.Cluster-.Ass ignment;
Update-.Estimates;
Perforu..Cluster-Initiation;
Echo-ClusterAssignent~framei);
Output-.Cluster-.Residuals;

until EDI;

{*End sequential clustering*}

for time :=fraaei+1 to 0 do
Echo..ClusterAssignment(time);

Stop_.TimerCO); {Tming}
Report.Times(6); {Tming}

END. i

V~
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